
Recent advanced in Compiler

Const parameters

The ‘const’ keyword for functions and procedures is now implemented. It protects the parameter
from being updated within the procedure or function. If the parameter is one or two bytes long it is
passed by value, but if longer it is passed by reference.

The purpose of this construct, though, unlike, say in Delphi, is to minimise Frame usage. Therefore
you must treat const in the same way as var (just as it was in early Delphi) for anything other than
byte, word, char etc. The only difference is that you are prevented from assigning a value to the
parameter. In particular this means that the parameter, if it is bigger than 2 bytes, must always be a
variable. So unlike Delphi you cannot pass large (sized) constants to a method using a const
parameter.

Default parameters

Example

function MyInc(x : integer; increment : integer = 1) : integer;

The second parameter here defaults to 1. That is the programmer may use the function with one or
two parameters. If only one parameter is passed the default value is used for the second parameter.

Not supported for complex parameters like arrays or records, nor for var or const parameters.

Skeletons

These allow ‘late defined’ constants to be used in a structure such as a record.

There are two syntaxes for using a skeleton, the definition and usage. The syntax for these two is
slightly different.

The syntax for defining the constants is < name : type [= default value] [;…] >

Example

TFIFO : record< BuffLen : word >
 Data : array[0..BuffLen – 1] of byte;
 ReadPtr : word;
 WritePtr : word;
end;

or

TFIFO : record< BuffLen : word = 8>
 Data : array[0..BuffLen – 1] of byte;
 ReadPtr : word;
 WritePtr : word;
end;

The advantage of describing it this way (rather than defining the const BuffLen externally) is that if,
for example, two FIFO buffers are needed with buffers of different lengths, a single definition is
required, and these can be later declared like this

var
 USBBuff : TFIFO<BuffLen = 64>;
 SerBuff : TFIFO<BuffLen = 8>;

Internally two separate record structures will be created and used, but the benefit to the programmer
is that the compiler does this work for him.

Important

A skeleton record must be completely defined, including all functions and procedures before
creating any instances. The easiest way to ensure that is to get into the habit of putting all skeleton
definitions into a separate unit.

Another, more complex example would be

TBiDiFIFO= Record< SendLen :word; RcvLen : word>
 SendBuff : TFIFO< BuffLen = SendLen >;
 RcvBuff : TFIFO< BuffLen = RcvLen >;
…
end;

The declaration of a var of this type might be

var
 SerBuff : TbiDiFIFO<SendLen = 8; RcvLen=10>;

The syntax for using the constants is

< ParmName = ParmValue[;...] >

Examples are shown above.

Defaults in skeletons

Defaults are permitted in skeletons too. So, for example if we decide most buffers are 8 bytes long
the above example becomes

TFIFO : record< BuffLen : word = 8 >
 Data : array[0..BuffLen – 1] of byte;
 ReadPtr : word;
 WritePtr : word;
end;

var
 USBBuff : TFIFO<BuffLen = 64>;
 SerBuff : TFIFO<>;

Inheritance

Skeleton records support both simple inheritance and multiple inheritance. What is more, the
inherited records do not need to be the first to be defined, and there is no requirement to put all
inherited records at the beginning.

Just as in regular records, though, all field name must be unique within the combined record. This
removes most of the issues traditionally associated with multiple inheritance.

The ‘as’ keyword

If you need to restrict the scope of a record to one of its ancestors, for example to pass as a
parameter to a function you can use the ‘as’ keyword.

Example:

type
 MyRec1<> = Record
 F1 : word;
 end;

 MyRec2<> = Record
 F2 : byte;
 End;

 MyRec3<> = record
 f3 : string[8];
 inherited MyRec1;
 f4 : integer;
 inherited MyRec2;
 f5: byte;
 end;

function V2(const x:MyRec2) : byte;
begin
 return(x.F2);
end;

var
 m : MyRec3;
 i : byte;
begin
 i := V2(m as MyRec2);
end;

Visibility of fields in records

By default all fields are public, that is to say, visible and modifiable by all. For skeleton records
only it is now possible to hide fields so that those fields can only be modified by the record itself
(through record functions, record procedures or record properties – see later) using the keyword
private. The keyword public is also supported to complete the visibility possibilities.

Once a visibility mode is specified it applied to all subsequent fields until another visibility mode is
specified.

Fields inherited also inherit the visibility, so private is a little more like protected in classical object
orientation. A descendant class cannot make a private field public except through properties.

Record functions and procedures

These are only supported for skeleton records.

These methods have a built in hidden parameter called ‘self’ which is of the record type.

Inheritance is supported for functions and procedures, but please note that this is not conventional
inheritance, because conventional inheritance requires extra memory overhead that is not really
suitable for this type of microcontroller. You will not really notice the difference unless you start
using lists of pointers to records and apply different record types to different methods and expect
them to know which version of the function to use. That will not be possible. Also there is no
implementation of the ‘is’ keyword such as you would see in classes in Delphi. That has no sensible
meaning for the implementation of inheritance provided. It is possible to build such structures for
yourself, but frankly if you need it you are probably using the wrong type of device.

The simple definitions of functions and procedures is how you might expect. For example

TFIFO : record< BuffLen : word >
 Data : array[0..BuffLen – 1] of byte;
 ReadPtr : word;
 WritePtr : word;
 function Empty: boolean;
end;

function TFIFO.Empty : boolean; // Note that you do not need to repeat the parameter list
begin
 return (ReadPtr = WritePtr);
end;

An example that uses the delayed constant BuffLen is

TFIFO : record< BuffLen : word >
 Data : array[0..BuffLen – 1] of byte;
 ReadPtr : word;
 WritePtr : word;
 function Full: boolean;
end;

function TFIFO.Full: boolean;
var
 iTest : word;
begin
 iTest := WritePtr + 1;
 if iTest = BuffLen then
 iTest := 0;
 endif;

 return(iTest = iReadPtr);
end;

Default values in record functions and procedures

Record functions and procedures may have defaults, but those defaults must only be defined inside
the record definition, so for example:

type
 TMyRec : Record<>
 function XX(v : byte = 7) : byte;
 end;

the implementation is written as

function TmyRec.XX(v : byte) :byte;
begin
 …
end;

Note that the default value is not repeated in the implementation. This makes it easier to change the
default value later, because it only need to be changed in one place.

inheritance of record methods

Records and procedures are visible to records that inherit them, but you cannot redeclare them as
that would violate the unique field name requirement.

You must tell the compiler that you are going to redeclare (override) a base function.

For example

type
 MyRec1<> = Record
 private
 F1 : word;
 public
 virtual function V1: word;
 end;

 MyRec2<> = Record
 private
 F2 : byte;
 public
 virtual function V2: byte;
 End;

 MyRec3<> = record
 f3 : string[8];
 inherited MyRec1;
 f4 : word;
 inherited MyRec2;

 f5: byte;
 override function V1 : word;
 override function V2 : byte;
 end;

function MyRec3.V1 : word;
begin
 f4 := inherited V1;
 f3 := IntToStr(f4);
 return(f4);
end;

Record Properties
A little like normal properties a record property has a getter and a setter (read and/or write).
However, unlike normal properties the setter and getter must be defined within the record, either as
a field or as a function or procedure with the correct form.

For example:

TFIFO : record< BuffLen : word >
 private
 fData : array[0..BuffLen – 1] of byte;
 fReadPtr : word;
 fWritePtr : word;
 function GetNext: byte;
 procedure SetNext(Value : byte);
 public
 property Next : byte read GetNext write SetNext;
 property ReadPtr : word read fReadPtr; // don’t allow uncontrolled write to this field
end;

Notice how one property definition accesses a function and a procedure, while the other access a
field directly. Notice also how everything except the properties are hidden from the programmer so
uncontrolled access is forbidden.

The definitions of the functions might be as follows:

 function TFIFO.GetNext: byte;
 var
 Result : byte;
 begin
 if fReadPtr <> fWritePtr then
 Result := fData[fReadPtr];
 fReadPtr := fReadPtr + 1;
 if fReadPtr = BuffLen then
 else
 return(0);
 endif;
 end;

 procedure TFIFO.SetNext(Value : byte);
 var

 iNext : word;
 begin
 iNext := fWritePtr + 1;
 if iNext <> fReadPtr then // buffer not full
 Data[fWritePtr] := Value;
 fWritePtr := iNext;
 endif;
 end;

The following is also allowed

TFIFO : record< BuffLen : word >
 private
 fData : array[0..BuffLen – 1] of byte;
 fReadPtr : word;
 fWritePtr : word;
 virtual function GetNext< BuffLen >: byte;
 virtual procedure SetNext<BuffLen>(Value : byte);
 public
 property Next : byte read GetNext write SetNext;
 property ReadPtr : word read fReadPtr; // don’t allow uncontrolled write to this field
end;

So property setters and getters can be overridden.

Other Notes:

1. For those of you familiar with Delphi please note that virtual and override appear before the
method definition, rather than after.

2. Private is more or less equivalent to Delphi strict protected.

3. Chevrons are only required when creating record definitions and creating a record. They are not
required for any function or procedure coding.

4. Skeleton records must be completely defined, including all functions and procedures before
creating any instances of the records.

Constants and types if record functions and procedures

Because there may be multiple physical copies of a record function or procedure, you are not
permitted local constants within a function. Use record skeleton constants (late defined constants) or
global constants instead. Local types are also currently not implemented.

Making Record Functions and procedures efficient.

Because multiple copied of a record function or procedure exists it makes sense to keep the
definitions as short as possible, perhaps by calling an external non-record function to do most of the
work. This is good practice anyway.

Restrictions on Record functions and procedures

Certain types of constructs are prohibited in record functions and procedures:

goto (and also labels)
ASM

but of course they can call normal functions and procedures that do contain these constructs.

What could possibly go wrong?

Despite their power there are issues with skeletons. Error messages could be in places that are not
intuitively obvious or indeed very helpful. For example suppose we have a TFIFO function

function TFIFO.GetPos9 : byte;
begin
 return(fData[9]);
end;

Then later we define

var
 iBuff1 : TFIFO<Bufflen = 10>;
 iBuff2: TFIFO<BuffLen=8>;

Then fData[9] is valid for iBuff1, but not for iBuff2, so the error can only appear on the line
defining iBuff2. Narrowing it down from there might not be easy.

