[image: image1.wmf]

 SEQ D2HDocument \h \r1 Standard Driver Manual

E-LAB AVRco

Pascal Multi-Tasking for Single Chips
Version for

AVR

Doc-To-Help Standard Manual
© Copyright 1996-2018 by E-LAB Computers

[image: image2.jpg]

 Blaise Pascal Mathematician 1623-1662

The contents of this user guide is copyright protected by E-LAB Computers

Author Rolf Hofmann

Editor Gunter Baab

E-LAB

Computers

Mikroprozessor-Technik

Industrie-Elektronik

Hard + Software

8-Bit (16-Bit (32-Bit

E-LAB Computers

Grombacherstr. 27

D74906 Bad Rappenau

Tel 07268/9124-0

Fax 07268/9124-24

http://www.e-lab.de
info@e-lab.de

Important information
Everybody tries to write Software without bugs. The emphasis is on tries, because everybody knows that the more complex a Software is, the more likely it is to produce bugs.

We believe that this shouldn’t have to be the norm, and that we should not have to live with the problems and mistakes (although some Software giants think like that ().

If you should find any errors, we would be grateful for any information. We will try to solve any problems as quickly as possible.

It is also a normal international agreement that the software producer does not accept liability for any costs arising out of errors in software, unless otherwise agreed.
E-LAB Computers do not accept liability for costs resulting out of errors in the software. It is a condition of use of this Software you agree with these terms. If you do not agree, you are not permitted to use the software.
As we have said, before this exclusion of liability is international standard.
This user guide and the software is intellectual property from E-LAB Computers and therefore copyright protected.

This document and the software it relates to are solely for the use of the purchaser. The purchaser is not permitted to give, sell or distribute these products. Distributing copies of these products to a third party is strictly prohibited.
We like to think that you as user of the software can make money from it and therefore also expect maintenance of the product. Illegal copies would make it impossible for us to be able to maintain this service.
As you see it is also in the interest of you, the user, to observe the copyright.
That’s it
the author

Table of Contents

91
Introduction

91.1
The Reason for Drivers

102
Overview

102.1
AVRco Versions

102.2
Driver and Manual Versions

102.3
Structure of the Documentation

113
Driver AVRco Standard Version

113.1
SwitchPorts: SwitchPort1, SwitchPort2, SwitchPort_G

123.1.1
Implementation

133.1.2
Imports and Exports

143.1.3
Key Repeat Support

153.1.4
Full Auto- Repeat Support

163.1.5
Support Functions

163.1.6
Variable Define of Switchport

173.2
KeyBoard Library Driver 2x2 ... 4x4

183.2.1
Exported Variables

183.2.2
Exported Functions and Procedures

193.2.3
Relation between Buttons and Bits

203.2.4
Debouncing

203.2.5
Key Repeat Support

213.2.6
Full Auto- Repeat Support

213.2.7
Support Functions

223.2.8
UserDevice and MatrixPort

243.3
KeyBoard Library Driver 2x8 ... 8x8

253.3.1
Exported Variables

263.3.2
Memory property of the keys

263.3.3
Exported Functions and Procedures

273.3.4
Relation between Buttons and Bits

273.3.5
Debouncing

273.3.6
Key Repeat Support

283.3.7
Full Auto- Repeat Support

293.3.7.1
Support Functions

303.3.8
User Device and KeyBoard8

313.4
LCD-Display

313.4.1
LCDPORT

323.4.2
Functions and Procedures

353.4.3
LCD-Split

363.4.4
User defined LCD-IO (LCDUserPort)

363.4.5
User defined LCD characters

373.5
LCD BarGraph Driver

393.5.1
Functions

413.6
LCDmultiPort Driver with up to 8 LCDs

413.6.1
Technical data

433.6.2
Types and Functions

453.6.3
Unused Port Pins of the LCD Control Port

463.6.4
Multi-Processing with the TWI Port

483.7
LED 7seg Display

483.7.1
Disp7sPort, Mux|NonMux

493.7.2
Functions and Procedures

523.8
LED 14seg Display Driver

533.8.1
Variables

533.8.2
Functions

563.9
LED 7seg Display Driver for up to 4 displays

563.9.1
Technical Data

583.9.2
Types

583.9.3
Variables

583.9.4
Functions

623.10
IOexpand Driver for up to 128 digital IOs

623.10.1
Technical Data

633.10.2
Functions and Variables

663.11
RS232/V24 Driver SerPort, SerPort2 and SerPort3, -4

663.11.1
Basic Functions (UART and USART)

673.11.1.1
Functions and Procedures

693.11.1.2
Interrupt Operation

713.11.1.3
Handshake Operation

743.11.1.4
RS485

753.11.1.5
TxComplete Callback

763.11.2
Port Switching

773.11.3
UART enable and disable for XMegas

783.11.4
IRDA for XMegas UARTs (IRcom)

793.11.5
Advanced Functions for Controller with USART

793.11.5.1
Types, Procedures and Functions

803.11.6
SLIP packet oriented Protocol

823.12
Serial Network LAN

843.12.1
Implementation

853.12.2
Exported Variables

853.12.2.1
Memory Organization

873.12.3
Exported Functions and Procedures

883.12.4
Multi-Processing

883.12.5
Line Drivers

903.13
USBport Driver USBsmart XMega

903.13.1
Import of the USB Driver

913.13.2
Definition of the USB Driver

913.13.1
Callback Function

923.13.2
Exported Functions and Procedures

933.13.3
Host/PC Implementation

933.13.3.1
Initialisation etc.

933.13.3.2
Device specific

933.13.3.3
Support

943.13.3.4
Data Transfer

953.13.1
Testprogram in the IDE PED32

963.13.2
Support Tools

973.14
PWMports

973.14.1
PWMport1A 1B 1C PWMport3A 3B 3C PWMport4A 4B 4C PWMport5A 5B 5C

983.14.2
PWMport2A, PWMport2B

993.14.3
Software PWM

1013.14.4
Software-PWM SoftPWM8 XMega

1023.15
XMega PWM

1023.15.1
Functions and Procedures

1033.16
XMega CRC

1033.16.1
Functions and Procedures

1043.17
SPI onBoard Network

1043.17.1
Mini Network

1053.17.2
Exported Variables

1063.17.3
Exported Functions and Procedures

1093.18
SPI Low Level SPIdriver, SPI_C…SPI_F Hardware Version

1103.18.1
Functions

1133.19
MSPI Low Level SPI driver MSPI_0..MSPI_3 AVR

1143.19.1
Functions

1153.20
MSPI Low Level SPI driver MSPI_C0..MSPI_F1 XMega

1163.20.1
Functions

1183.21
SPI Low Level SPIdriver1/2 Software Version

1193.21.1
Functions

1203.22
Serial SPI Flash AT25DF (XMega)

1223.23
TWI (I2C) Drivers Master and Slave

1223.23.1
Master Mode

1223.23.2
Slave Mode

1243.23.3
Functions

1243.23.3.1
TWIstat

1243.23.3.2
TWIinp

1243.23.3.3
TWIinpP

1253.23.3.4
TWIout

1253.23.3.5
TWIoutP and TWIoutWP

1273.23.4
Multi-Processing with the Master

1283.23.5
TWI (I2C) Slave

1293.23.6
Common Functions

1293.23.7
Functions in Handshake Mode

1313.23.8
Functions in Transparent Mode

1333.24
TWI-Net Library Driver

1333.24.1
TWI network

1363.24.2
Implementation

1373.24.3
Exported Types

1373.24.4
Exported Variables

1373.24.4.1
Memory Organization

1393.24.4.2
Variables only in MasterSlave and Slave Mode

1403.24.5
Multi-Processing with the Master

1413.24.6
Multi-Processing with the Slave

1413.24.7
Exported Functions and Procedures

1433.24.8
Functions and Procedures only available in MasterSlave mode

1433.24.9
Functions and Procedures only available in MasterSlave and Master mode

1463.24.10
Additional Functions

1493.25
AD-Converter

1493.25.1
ADCPORT

1493.25.2
ADCchans, RAMpage

1493.25.3
Functions and Procedures

1503.25.4
Call-Back Function onADCread

1513.26
AD-Converter XMega

1513.26.1
ADC_A ADC_B

1513.26.2
Defines

1523.26.3
Functions and Procedures

1533.27
DA-Converter XMega

1533.27.1
DAC_A DAC_B

1533.27.2
Defines

1533.27.3
Functions and Procedures

1543.28
Real Time Clock

1553.28.1
RTC-Functions/Procedures

1563.28.2
Alarm-Procedures

1563.28.3
Timer-Procedures

1583.29
I2C-Bus

1583.29.1
I2CPORT

1583.29.2

1593.29.3
Functions and Procedures

1613.29.4
The I2C-BUS Interface

1613.29.5
Multi-Processing and I2C

1633.30
I2Cexpand Driver for up to 8 bidirectional Ports

1633.30.1
Technical Data

1653.30.2
Types and Functions

1653.30.3
Multi-Processing and TWI Port

1673.31
Pulse Counter driver PulseCount

1673.31.1
Functions

1683.32
Pulse Counter driver PulseCount XMega

1683.32.1
Functions

1693.33
Incremental Encoder Driver IncrPort

1693.33.1
Functions

1713.34
Incremental Encoder Driver IncrPort4

1713.34.1
Functions

1733.35
UP/DOWN Counter Driver XMega

1743.35.1
Functions

1753.36
QDEC Incremental Encoder Driver XMega

1763.36.1
Functions

1773.37
Stepper-Motor

1773.37.1
Fundamentals

1773.37.1.1
ConstantVoltage Operation

1773.37.1.2
ConstantCurrent Operation

1773.37.1.3
Limitations

1783.37.2
Acceleration Ramp

1783.37.3
Drive Modes

1793.37.4
Import of the Stepper

1793.37.5
Parameters of the Stepper

1803.37.6
Commands/Procedures of the Stepper

1823.38
Stepper-Motor in UserMode

1833.38.1
Parameters of the Stepper

1843.38.2
Commands/Procedures of the Stepper

1873.38.3
StepperIOS

1893.39
Servo Driver for up to 8 digital Servos

1903.39.1
Technical Data

1903.39.2
Functions

1923.40
DCF-77 Decoder

1933.40.1
DCF77-Functions/Procedures

1943.40.2
Hardware

1953.41
AVR Timer Low Level Driver TickTimer

1953.41.1
Variable

1963.41.2
Functions

1963.41.3
Interrupt

1973.42
FreqCount Driver - Frequency Counter/Timer

1973.42.1
Overview Frequency Counter

1983.42.2
Overview Pulse Timer

1993.42.3
Functions, Procedures, Types

2013.43
FreqCount driver – Frequeny Counter XMega

2023.43.1
Import & Define FreqCount

2023.43.2
Functions, Procedures, Types

2043.44
RFID125 Receiver (XMega only at this time)

2053.45
RC5 Decoder/Encoder Driver

2053.45.1
Receiver

2053.45.2
Transmitter

2063.45.3
Functions Receiver

2063.45.4
Functions Transmitter

2083.46
SHT11 Temperature and Humidity Sensor Driver

2093.46.1
Variables

2093.46.2
Functions

2113.47
Sound Generator and Driver

2113.47.1
Functions

2133.48
SysLEDblink

2143.48.1
Implementation

2143.48.2
Functions

2163.49
Line Printer Driver LPTport

2173.49.1
Functions and Types

2193.50
Banking Port

2203.50.1
Implementation

2213.50.2
Hardware Example

2243.51
Flash Downloaded/Writer

2243.51.1
Overview

2243.51.2
Compiler Switches

2253.51.3
BootApplication

2253.51.4
FlashWrite at Runtime

2253.51.4.1
Functions

2273.51.5
Usage of FlashWrite

2273.51.5.1
Implementation

2283.51.5.2
Rewrite a Page completely

2313.51.5.3
FlashDownLoad at RunTime

2333.51.5.4
FlashDownLoader Functions

2343.51.6
Host Program

2353.51.7
Boot Area, Optimiser and re-compile

2363.52
BootApplication and MainApplication

2383.52.1
XMega FlashLoader

2403.53
Device Drivers

2403.53.1
Organisation

2413.53.2
Formal Declarations

2443.53.3
BlockDevice

1 Introduction

1.1 The Reason for Drivers

As with every computer system, a Microcontroller system does not exist in isolation. It communicates with the outside world. This could be a human, another computer system, external media, sensors, actuators etc.

There are many options.

This communication can be very simple, e.g. the control of LEDs on a port. It becomes more complicated if the port is used to read mechanical switches, pushbuttons etc. With these debouncing is indispensable.

The complexity ends with graphic and file system drivers.

All these tasks are generally done by what are known as drivers. The drivers control the resources.

In the embedded sphere these drivers were for years, even tens of years, personal developments, mostly written in assembler. A common development systems offered at best a support for a serial interface. Because of the limited resources of the controllers this was generally sufficient.

In recent years the controllers increased their performance from about 1MIPS to 20MIPS or more and the on-chip memory from typically 1kByte up to 1Mbyte is now possible to realize very complex systems with small controllers. In addition the customers demands for software grew continually.

In the past some sensors, LEDs, relays and push buttons were sufficient. Nowadays control panels, LCD or even graphic LCDs, file systems, networks and complex calculations are common demands.

With a PC in mind this is no big problem. Everything is built in including all of the hardware as the necessary drivers.

But even today a typical development system offers nearly nothing. In the best case one can buy libraries for a lot of money and these must frequently be adapted with lots of effort.

This results frequently in “do-it-yourself” jobs and the self-made drivers are the developers “pets” that are carefully maintained. But rarely is the actual driver needed in the library. This leads again to a do-it-yourself job with extensive development and debug time consumption.

For that reason the AVRco system has a very large number of drivers, so the programmer can focus the essentials - his application.

A frequent counter argument is: “I only know my own software exactly“ and “I do not know how a foreign driver is precisely working“.

The answer is that the drivers in a development system are used hundreds of times in a wide area and can

essentially be considered as bug-free. Besides that, development time is expensive and can be enormously reduced by available and proven drivers.

E-LAB is proud to have the development system with the greatest number of built-in drivers.

Nearly all drivers are supported by the AVRco Application Wizard and also by the AVRco Simulator.

2 Overview

2.1 AVRco Versions

All AVRco Versions support all AVR Controller with an internal RAM (for the stack). That means in practice the whole range.

AVRco Profi Version:

the Profi Version contains all available drivers, including very complex ones like e.g. a FAT16 file system

and an extensive library for graphic LCDs.

The professional program development is furthermore assisted by the full support of Units.

AVRco Standard Version:

the Standard Version omits only the most complex drivers, and does not support units.

AVRco Demo Version:

the Demo Version supports all controllers and all drivers of the Standard Version.

The only restriction is the limitation of the generated code to max. 4 kByte size.

2.2 Driver and Manual Versions

This Manual concerns the drivers contained as well in the AVRco Standard Version as in the AVRco

Profi Version.

2.3 Structure of the Documentation

..\E-Lab\DOCs\DocuCompiler.pdf:

contains the Pascal language description and the enhancements compared with Standard Pascal

..\E-Lab\DOCs\DocuStdDriver.pdf:

contains the description of the drivers contained as well in the Standard, as in the Profi Version.

..E-Lab\DOCs\DocuProfiDriver.pdf:

contains the description of the drivers contained only in the Profi Version.

..E-Lab\DOCs\DocuReference.pdf:

contains a Short Reference (the the same as the online help)

..\E-Lab\DOCs\DocuTools.pdf:

contains the description of the IDE, the simulator, a tutorial etc.

..\ E-LAB\IDE\DataSheets\Release-News.txt:

lists the enhancements in chronological order.

The enhancements are documented in the above mentioned .pdf files (DocuXXX.pdf)

..\E-Lab\AVRco\Demos\ :

contains many test and demo programs

..\E-Lab\DOCs\ :

contains the documentation, the Release-News and further schematics and data sheets
3 Driver AVRco Standard Version

3.1 SwitchPorts: SwitchPort1, SwitchPort2, SwitchPort_G
A SwitchPort in the AVRco System is a debounced port. Debouncing means that a Port bit must be stable and doesn’t change its state at least 2 System Ticks so it will be recognized as a stable condition. Then this bit (the state of it) will be copied into a corresponding (stable) byte.

By debouncing the application can be sure that a mechanical switch or key has a stable and unique condition when it is read by the SwitchPort functions. False interpretations are avoided with debouncing.

The debouncing is done in the SysTick so it must be imported. Furthermore a debounce can only be done when the global interrupt is enabled (EnableInts or Start_Processes).

The application can access a single bits of a SwitchPorts with INP_STABLE__(BitNum). This function returns the actual state of the selected bits as true or false.

With most of the applications the function INP_RAISE(BitNum) is more important. Here the status change is returned. If the Port Bit has changed from stable-false to stable-true a true is returned and at the same time this edge state is reset. This means that a positive edge will be latched and can be read by this function. Each additional function call then returns a false until a new positive edge appeared. Then the state of the edge detection remains true until this function is called again, no matter how often the edge appeared and the port bit has changed its state. This function can only say that at least once a transition happened after the last function call. How often this happened is unknown and the current state of the port bit doesn’t matter.

An additional possibility for the application is to read out the stable state of the whole port by reading the byte PORT_STABLE. It contains all debounced bits of this port.

The AVRco system knows 3 SwitchPorts: SwitchPort1, SwitchPort2 and SwitchPort_G.

The first two are related to an entire unique port and read and process this port in one part. So up to 16 Switches and keys can be handled, with the limitation that always eight bits must reside in the same physical port of the CPU.

This limitation to one port is not there when SwitchPort_G is used. The 8 bits of this “virtual“ port can be placed anywhere into the CPU’s address area which includes all ports of the CPU. The disadvantage of SwitchPort_G is that the processing, which done in the SysTick, requires much more work (code size, time) compared to the standard SwitchPort.

In general the SysTick must not be too short in order to have a secure debouncing. One must know that a mechanical switch can bounce between 1 and 20msec. Then a SysTick of 1..5msec can not do a secure debouncing in most cases.

Because of this with SysTicks < debounce time it makes sense to do the debouncing not with each SysTick but in intervals of x SysTicks. For this purpose there is the Define Debounce which imports an internal interval timer. So at design time it’s possible to define that for example only at each 5th tick the debouncing is executed. This timer, if defined, is then also responsible for all system debouncing which includes the Matrix Port and the Keyport.

None of the SwitchPort drivers do any port or hardware initialising. It’s the job of the application to initialise these physical ports in a correct manner.

Implementation

Imports

As always with AVRco the driver must be imported.

Import SysTick, SwitchPort1, ..;

Defines

The port register (in most cases the PIN-register must be used!)

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

SwitchPort1
= PinB;
{SwitchPort}

Optional the polarity of the trigger edge (Edgemask) can be defined with:

Define
SwitchPort1
 = PinB, $17;
{SwitchPort, edgepolarity}

An additional option is the definition of the port polarity:

Define
PolarityP1
= %00000110; {Polarity SwitchPort1}
The purpose of the port Polarity is to always have positive results with low-active inputs.

PolarityP1 = $F0; // upper 4bits high active, lower 4bits low active

With the PolarityP byte the active levels of each input (8bits) can be set. Each bit corresponds to an input bit and defines whether a 0 or a 1 is the result of a closed switch. So it doesn’t matter how the switch logic is constructed, a high is always returned for a closed switch and the system can always work with positive logic.

The Edgemask defines the edge for each input. A binary zero means that a positive edge must be latched, or if a correct polarity is defined a 0 means “onSwitchClose“ trigger and a 1 means “onSwitchOpen“ trigger.

The port polarity definition of course also influences the behaviour of the edge mask because at first the physical port must be read and then processed with PortPolarity (XOR). The result of this operation must then be processed with the Edgemask.

SwitchPort2 has the same definition as SwitchPort1. So the above is also true for this port.
An additional option is the define of a debounce interval:

Debounce = 5; {debounce every 5 SysTicks}

With very short (fast) SysTicks < 10mSec and long bouncing switches or keys a secure debouncing is not possible. With this optional define Debounce the used interval can be adjusted. If for example the Tick is 1mSec and the debounce interval is 20 the debouncing is done every 20mSec which is a good value. The Define of the Debounce influences also the debounced system drivers like KeyPort and MatrixPort.

SwitchPort_G definition differs significantly from the other two SwitchPorts:

Import SysTick, SwitchPort_G, ..;

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

SwitchPort_G
= [ResetKey, PinC, 4][StartInput, PinC, 5] [Sensor, PinB, 1], %00000001;

PolarityP_G
= %00000110;
{Polarity SwitchPort_G}

Because each of the SwitchPort_G bits can reside in a different port, each bit must then completely defined. This must be done with up to eight pin-defines:

[PinName, PortName, BitNum]

PinName is a freely definable name which can be used by the application as byte constant.

PortName is the name of a PIN-register but can be also any numerical address in the RAM area.

BitNum is the desired bit in the (Port/address) PortName.

The bit definitions must be separated by []. A comma or semicolon is not permitted here. At the end of the up to 8 bit-definitions the optional parameter EdgeMask can be appended, separated by a comma.

The port Polarity parameter PolarityP_G is also an option here, as is the Debounce Define.

3.1.1 Imports and Exports

An import of a SwitchPort also imports a number of bytes which are reserved for the system. The port handler is linked into SysTick.

Each SwitchPort exports a variable PORT_STABLE which contains all bits of the ports in their debounced state. This variable can always be read.

A SwitchPort can have unexpected conditions after a CPU reset depending on the port levels, so there is the procedure SWITCHPORTx_CLEAR which clears the port’s state.

Because the state of a Switch port is stable at least after 3 SysTicks after the global interrupt enable (EnableInts or Start_Processes) it makes sense to wait a few ticks and then call SWITCHPORTx_CLEAR.

The debounced state of a single port bit can be received with the function INP_STABLEx(bit).

Whether a Switch port bit had an edge change or not can be determined with the function INP_RAISEx(bit), but bear in mind that only that edge which was selected with the EdgeMask definition is latched.

Definitions
Var
PORT_STABLE1
: byte;

PORT_STABLE2
: byte;

_STABLE_G
: byte;
Procedure SWITCHPORT1_CLEAR;
// SWITCHPORT1

Procedure SWITCHPORT2_CLEAR;
// SWITCHPORT2

Procedure SWITCHPORT_G_CLEAR;
// SWITCHPORT1_G

Function INP_STABLE1 (bit : byte) : boolean;
// SWITCHPORT1

Function INP_STABLE2 (bit : byte) : boolean;
// SWITCHPORT2

Function INP_STABLE_G (bit : byte) : boolean;
// SWITCHPORT_G

Function INP_RAISE1 (bit : byte) : boolean;
// SWITCHPORT1

Function INP_RAISE2 (bit : byte) : boolean;
// SWITCHPORT2

Function INP_RAISE_G (bit : byte) : boolean;
// SWITCHPORT_G

Key Repeat Support

The driver also provides an optional support of external repeat functions.

In order to implement an auto-repeat function of the keys the controlling part of the application must know how long a key is activated.

To support this each key has its own optional 8bit timer which is incremented in each scan interval as long as the key stays active and stable. The timer stops at 255. If the key becomes released the timer will be reset to zero.

There are 8 timers. These timers are placed into an array and can be read by the application.

If this option must be used the timers must be imported.

Import SysTick, SwitchPort1, ... ;
// SwitchPort2, SwitchPort_G

From System import SwitchPTimer1;
// SwitchPTimer2, SwitchPTimer_G

This import defines the timer array in this way:

Var SwitchTimerArray1 : array[0..7] of byte;

Now the application can access the array without any restrictions:

if 1[2] > 0 then

 // key is pressed

 ...

endif;

or:

case SwitchTimerArray1[4] of
 0 : // key released

 |

 1..10 : // key initially activated

 |

else

 // do any repeat action

endcase;

Note:

The timers are incremented in the scan interval. In most cases this is the once per SysTick.

If Debounce is defined the increments are done in (SysTick * Debounce) intervals.

Because the Switch port always scans an entire 8bit port, unused port bits can change their timers.

But more worse is if such pins are written into the pipe and start an event (WaitPipe etc). To prevent this unwanted behaviour it is possible to mask unwanted bits.

This Define supports it:

Define SwitchPMask1 = $0F; // SwitchPMask2, SwitchPMask_G

Mask bits set to 1 enable this pin for processing, bits set to 0 exclude these bits from processing.

Full Auto- Repeat Support

The driver also provides an optional internal auto-repeat function.

The SwitchPTimerx is used to build the Auto-Repeat function.

The resulting Key events are then stored into a special pipe KeyboardPipe.

In most cases the application now does not need any of the standard KeyPort functions.

All operations can be done with the Pipe. All of the common pipe function can be used.

If this option must be used the SwitchPTimers must be imported.

Import SysTick, SwitchPort1, ... ;

// SwitchPort2, SwitchPort_G

From System import Pipes, SwitchPTimer1;
// SwitchPTimer2, SwitchPTimer_G

The Auto-Repeat function must be declared with a Define:

Define SwitchPPipe1 = PipeLen, FirstRepeat, RepeatRate; // SwitchPPipe2, SwitchPPipe_G
Then this variable will be exported:

SwitchKeyPipe1 : Pipe[PipeLen] of Byte;

// SwitchKeyPipe2, SwitchKeyPipe_G
The first parameter PipeLen defines the length of the pipe and hence the number of keystrokes which can be stored in it.

The second parameter FirstRepeat defines the time in msec elapsed before the repeat starts.

The third parameter RepeatRate defines the time in msec between two repeats.

If a key is actually pressed and the debounce time is elapsed the key ID (0..7) is immediately written into the pipe. If the key stays active the auto-repeat starts after the FirstRepeat time has elapsed. The repeat writes then in RepeatRate msec intervals into the pipe. Each time the ID of this key is written into the pipe. The auto-repeat works until either this key is released or the pipe is full.

If any key becomes inactive the corresponding Key-ID + $80 (8th bit set) is written into the pipe.

The application can access the pipe at any time with:

If PipeStat (SwitchKeyPipe1) <> 0 then

 key:= PipeRecv (SwitchKeyPipe1);

 ...

endif;

3.1.2 Support Functions

The repeat operation can be enabled or disabled at runtime with these procedures:

Procedure SwitchKeyRepeat1 (rept : boolean);

Procedure SwitchKeyRepeat2 (rept : boolean);

Procedure SwitchKeyRepeat_G (rept : boolean);

Basically in addition all SwitchPort functions can be used like ClearKeyBoard. But in most cases this is not necessary.

Also all the pipe related functions can be used like PipeFlush. It is also possible to write directly into the keyboard buffer with PipeSend, a technique that was often used in the old MSDOS days.

Processes and Tasks can use the Function WaitPipe.

3.1.3 Variable Define of Switchport

The Define for SwitchPort1 and SwitchPort2 can also be a byte variable:

Define SwitchPort1 = @name, ...

where "name" can be any identifier because at this time no variable is defined.

The system then implements this variable "name" of type byte automatically.

The main purpose is that for example Processes or Tasks can "feed" this byte with special IO results

(e.g. I2C) and the system debounces it.

3.2 KeyBoard Library Driver 2x2 ... 4x4

With many embedded applications there are control keys connected, which the user uses for keying in commands or parameters. As long as these keys can be connected to a single input port, this is no problem in most cases. If there are many keys it’s necessary to use many port pins. In most cases the available port pin count of a CPU is too small for connecting a larger keyboard.

Here we can use the multiplex processing of a keyboard. The keys are connected at the cross points of a matrix. The matrix is constructed of columns and rows. The maximal possible count of the keys is determined of the product of columns x rows. With 4 columns and 4 rows the maximum is 16 Keys. With a 4x4 matrix it is possible to halve the necessary pins compared to the non-multiplexed scheme.

With the multiplex scheme the rows are activated one after another, all columns are read in and analysed. The result is stored into bit fields. A 4x4 matrix shows a 16bits result. Only one row is activated at one time, the others remain in TriState condition.

In this implementation each column has a PullUp resistor of 1.. 10kOhm. The impedance of the internal PullUps of the AVR is too large (typ. 80k) for this purpose. Because of the fast scan, the positive edges of the columns are too slow. They are charged by the capacitive loads of the CMOS-inputs, wires, keys etc. and false results must be expected. The scanning is done within the SysTick routine, which must be imported for that reason.

While scanning the keys are debounced. A keys state must be stable for at least 3 SysTicks before a change will be accepted.

Imports

The SysTick driver must be imported.

Import SysTick, MatrixPort, ... ;

By the import of the MatrixPorts the enumeration “Keys” is automatically imported:

Type Keys = (Key1, Key2, ..., KeyN);

Const lastMatrixKey : Keys = KeyN;

Defines

The mode and parameters of the keyboard driver must be defined.

Define
MatrixRow
= PortA, 4
{use PortA, start with bit4}

MatrixCol
= PinA, 0;
{use PinA, start with bit0}

MatrixType
= 3, 4;
{3 Rows at PortA, 4 Columns at PinA}

The application can process the IO-accesses by itself. But then the Define must be changed:

Define MatrixPort = UserPort;
MatrixRow and MatrixCol must not be defined in this case. The application now must provide this Call-Back function:

UserDevice MatrixPortIOS : byte;

Now the drivers internal functions like debouncing and scanning are used where the application feeds them with the result of reading a special, normally not supported hardware.

3.2.1 Exported Variables

Memory Organisation

All keyboard related variables are defined sequentially in the memory.

_OLDMX2
byte

_OLDMX1
byte

_MATRIX2
byte

_MATRIX1
byte

_CHANGEMX2
byte

_CHANGEMX1
byte

KEYBOARD
semaphore

Don’t access any of the above vars, except “KeyBoard”.

The var “KeyBoard” is an 8-bit Semaphore which can be accessed with the corresponding methods. This semaphore contains as an information the count of key clicks. It is reset with “ClearKeyBoard”.

This semaphore is highly recommended if processes are imported to avoid continuous polling of the keyboard. The process sleeps until a key becomes active.

process HandleKeyBoard(20, 20 : idata);

begin

 WaitSema (KeyBoard);

 case GetKey of

 Key1 : ...; |

 endcase;

end;

3.2.2 Exported Functions and Procedures

Function ReadKey (const key : Keys) : boolean;

The actual state of a key is returned with a true or false. If the key is pressed, the result is true, otherwise it’s false. The parameter Key must be of type “Keys”, e.g. Key1..Key16.

Function KeyRaised (const key : Keys) : boolean;

The state of a key is returned by a true or false. If a key was pressed at least once, then a true is returned. There is no information as to whether the key is still pressed or not. The KeyBoard driver has a memory function. This means that a pressed key is latched and stored in a bit until it is cleared with the KeyRaised function or a ‘ClearKeyBoard’ is called. With this a continuous polling of the keys by the user program can be avoided.

Function ReadKeyBoard : BitSet of Keys;

The result of this function is a “BitSet of Keys” where each bit corresponds with a key. The result is the static state of the keys and not the latched state. The definition of “ BitSet of Keys” is as follows:

Type
Keys
= (Key1, Key2, ..., KeyN);

KeySet
= BitSet of Keys

There are several possibilities to handle the BitSet-result:

bool:= [Key1, Key4] in ReadKeyBoard;

bool:= ReadKeyBoard in [Key1, Key4];

bool:= ReadKeyBoard = [Key1, Key4];

bool:= [Key1, Key4] = ReadKeyBoard;

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\BitSets

Function KeyStatRaised : boolean;

The state of the entire KeyBoard is returned with a true or false. If there was at least one key pressed and latched and “KeyRaised” does not read out this key, the result becomes true. In other words, the function returns a true if a key was pressed and is still latched. With this function a complete KeyBoard read-out by many “KeyRaised” can be avoided until this function returns a true.

Function GetKeyRaised : Keys;

This function calls “KeyStatRaised” and if it gets a true, the first latched key found is returned. If no key is latched the function polls KeyStatRaised until a latched key is found. This means, if no key can be found the user program never gains the control, because this function loops endless.

Function KeyStat : boolean;

The state of the entire KeyBoard is returned with a true or false. If there is at least one key pressed the result becomes true. In other words, the function returns a true if a key is still pressed. With this function a complete KeyBoard read-out by many “GetKey” can be avoided until this function returns a true.

Function GetKey : Keys;

This function calls “KeyStat” and if it gets a true, the activated key found is returned. If no key is active the function polls KeyStat until an active key is found. This means, if no key can be found the user program never gains the control, because this function loops endless.

Procedure ClearKeyBoard;

This procedure clears the entire keyboard including the memory “KeyRaised” and the semaphore.

Procedure KeyBoardEnable (ena : boolean);

This procedure enables or disables the entire KeyBoard including the Scanner, Timer etc. So it is possible to disable user key operations or with time critical program parts the SysTick latency (interrupt disable duration of the SysTicks) can be temporary reduced to a minimum.

3.2.3 Relation between Buttons and Bits

The button on the cross point of Row1 and Col1 is the most significant bit. Then button on the point Row1/Col2 follows etc.

If the matrix for example has 12 buttons so there are 12 bits relevant, this means that the result of a function call can be Key1..Key12. The button on Row1/Col1 returns Key12. If the layout of the keyboard is 4Cols and 3Rows then the button on Row3/Col4 returns the value Key1.

	Row1/Col1

Key12
	Row2/Col1

Key8
	Row3/Col1

Key4

	Row1/Col2

Key11
	Row2/Col2

Key7
	Row3/Col2

Key3

	Row1/Col3

Key10
	Row2/Col3

Key6
	Row3/Col3

Key2

	Row1/Col4

Key9
	Row2/Col4

Key5
	Row3/Col4

Key1

Debouncing

With SysTick < bounce-time it makes sense not to do a debouncing with each SysTick but to do the debouncing in intervals of x SysTicks. For this purpose there is the optional

Define Debounce = nn; // nn = SysTicks

Which imports an internal interval timer. So the debouncing is done every 5th tick for example. This timer then is also responsible for system wide debouncing, including the KeyBoard8 and the SwitchPorts.

3.2.4 Key Repeat Support

The driver also provides an optional support of external repeat functions.

In order to implement an auto-repeat function of the keys the controlling part of the application must know how long a key is activated.

To support this each key has its own optional 8bit timer that is incremented in each scan interval as long as the key stays active and stable. The timer stops at 255. If the key becomes released the timer will be reset to zero.

Each key has its own timer. These timers are placed into an array and can be read by the application.

If this option is to be used the timers must be imported.

Import SysTick, MatrixPort, ... ;

From MatrixPort import MatrixTimer;

This import defines the timer array in this way:

Var MatrixTimerArray : array[Keys] of byte;

Now the application can access the array without any restrictions:

if MatrixTimerArray[Key1] > 0 then

 // key is pressed

 ...

endif;

or:

case MatrixTimerArray[Key1] of
 0 : // key released

 |

 1..10 : // key initially activated

 |

 else

 // do any repeat action

 endcase;

Note:

The timers are incremented in the scan interval. In most cases this is once per SysTick.

If Debounce is defined the increments are done in (SysTick * Debounce) intervals.

3.2.5 Full Auto- Repeat Support

The driver also provides an optional internal auto-repeat function. The MatrixTimer is used to build the Auto-Repeat function.

The resulting Key events are then stored into a special pipe KeyboardPipe.

In most cases the application now does not need any of the standard KeyPort functions. All operations can be done with the Pipe. All of the common pipe function can be used.

If this option is to be used the Matrix Timers must be imported.

Import SysTick, MatrixPort, ... ;

From MatrixPort import MatrixTimer;

The Auto-Repeat function must be declared with a Define:

Define MatrixPipe = PipeLen, FirstRepeat, RepeatRate;

Then this variable will be exported:

MatrixKeyPipe : Pipe[PipeLen] of Keys;

The first parameter PipeLen defines the length of the pipe and hence the number of keystrokes that can be stored in it.

The second parameter FirstRepeat defines the time in msec elapsed before the repeat starts.

The third parameter RepeatRate defines the time in msec between two repeats.

If a key is actually pressed and the debounce time is elapsed the key is immediately written into the pipe. If the key stays active the auto-repeat starts after the FirstRepeat time has elapsed. The repeat writes then in RepeatRate msec intervals into the pipe. Each time the ID of this key is written into the pipe. The auto-repeat works until either this key is released or the pipe is full.

If any key becomes inactive the corresponding Key-ID + $80 (8th bit set) is written into the pipe.

The application can access the pipe at any time with:

If PipeStat (MatrixKeyPipe) <> 0 then

 key:= PipeRecv (MatrixKeyPipe);

 ...

endif;

3.2.6 Support Functions

The auto-repeat operation of the driver can be enabled and disabled at runtime with:

Procedure KeyBoardRepeat (rept : boolean);

In addition all MatrixPort functions can be used, such as ClearKeyBoard, but in most cases this is not necessary.

Also all the pipe related functions like PipeFlush can be used. It is also possible to write directly into the keyboard buffer with PipeSend, a technique that was often used in the old MSDOS days.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\KeyBoardAuto

3.2.7 UserDevice and MatrixPort

If an application cannot use the standard ports of an AVR for the KeyBoard-IO it’s possible for the user application to do its own special port accesses. The driver controls the scanning and does the debouncing.

Define

 ProcClock
= 16000000; {Hertz}

 SysTick
= 10;

 StackSize
= $0064, iData;

 FrameSize
= $0064, iData;

 KeyB8Type
= UserPort, 5; {5 Rows, 8 Columns}

Implementation

{$NORETURNCHECK}

UserDevice KeyBoard8IOS : byte;

begin

 ASM;

 ...

 ...

 EndASM;

end;

The driver passes the register _ACCA (R17) and _ACCB (R16) to the UserDevice function. Register _ACCA contains the actual COL number as 0, 1, 2, 3, 4 etc. As an alternative the register _ACCB contains the COL number as a bit position $1, $2, $4, $8, $10, $20 etc. Dependant on the construction of the external hardware _ACCA or _ACCB can be used to read-in a ROW .

With a multiplexer _ACCA is preferable, with a latch or similar _ACCB is suitable better.

The application must return in _ACCA the column read result to the calling driver.

The program code must be written in assembler in order to be as fast as possible because this function is called from the SysTick. Because of this only _ACCA and _ACCB can be used for the IO-processing. If additional registers must be used they must be saved with a PUSH and later restored with a POP.

Local variables are forbidden and so is the calling of system drivers or mathematical operations of the system.

[image: image3.png]PAO
AVR CPU

PA1

PA2

PA3

PA4

PAS

PAS

PAT

T

‘ Example
COMPUTERS
o7

I

el 07

Copyright o
s 22s

”il; AVR Matrix Keyboard
all
i

schematic KeyBoard
3.3 KeyBoard Library Driver 2x8 ... 8x8

With many embedded applications there are control keys connected, which the user uses for keying in commands or parameters. As long as these keys can be connected to a single input port, this is no problem in most cases. If there are many keys it’s necessary to use many port pins. In most cases the available port pin count of a CPU is too small for connecting a larger keyboard..

Here we can use the multiplex processing of a keyboard. The keys are connected at the cross points of a matrix. The matrix is constructed of columns and rows. The maximal possible count of the keys is determined of the product of columns x rows. With 8 columns and 8 rows the maximum is 64 Keys. In general it’s possible to use far fewer pins compared to the non-multiplexed scheme.

With the multiplex scheme the rows are activated one after another, all columns are read in and analysed. The result is stored into bit fields. A 8x8 matrix shows a 64bits result. Only one row is activated at one time, the others remain in TriState condition.

In this implementation each column has a PullUp resistor of 1..10kOhm. The impedance of the internal PullUps of the AVR is too large (typ. 80k) for this purpose. Because of the fast scan the positive edges of the columns are too slow. They are charged by the capacitive loads of the CMOS-inputs, wires, keys etc. and false results must be expected. The scanning is done within the SysTick routine, which must be imported for that reason. In order to save code space und execution time a complete input port is used for the column input.

While scanning the keys are debounced. A keys state must be stable for at least 3 SysTicks before a change will be accepted.

Imports

The SysTick driver must be imported.

Import SysTick, KeyPort8, ... ;

By the import of the KeyPort the enumeration “Keys” is automatically imported:

Type Keys = (Key1, Key2, ..., KeyN);

Const lastKeyBoardKey : Keys = KeyN;

Defines

The mode and parameters of the keyboard driver must be defined.

Define
KeyB8Row
= PortA, 2;
{use PortA, start with bit2}

KeyB8Col = PinD;
{use PinD complete input port}

KeyB8Type
= 4;
{4 Rows at PortA, 8 Columns at PinD}

Debounce
= 4;
{optional debounce in systick counts)

Remarks:
The Row-port must be a bi-directional port.

The Col-port must at least consist of an input-port.
The application can process the IO-accesses by itself. But then the Define must be changed:

Define KeyB8Type = UserPort, 3; {3 Rows, 8 Columns}

KeyB8Row and KeyB8Col must not be defined in this case. The application now must provide this Call-Back function:

UserDevice KeyBoard8IOS : byte;

Now the driver internal functions like debouncing and scanning are used where the application feeds them with the result of reading a special, normally not supported hardware.

3.3.1 Exported Variables

Memory Organization

All KeyBoard8 related variables are defined in a row in the memory.

KEYBOARD8
.EQU
076h
; var iData semaphore

_KEYBOARDENA
.EQU
077h
; var iData boolean

_OLDKB81
.EQU
078h
; var iData byte

_OLDKB82
.EQU
079h
; var iData byte

_OLDKB83
.EQU
07Ah
; var iData byte

_OLDKB84
.EQU
07Bh
; var iData byte

_KEYB81
.EQU
07Ch
;var iData byte

_KEYB82
.EQU
07Dh
; var iData byte

_KEYB83
.EQU
07Eh
; var iData byte

_KEYB84
.EQU
07Fh
; var iData byte

_CHANGEKB81
.EQU
080h
; var iData byte

_CHANGEKB82
.EQU
081h
; var iData byte

_CHANGEKB83
.EQU
082h
; var iData byte

_CHANGEKB84
.EQU
083h
; var iData byte

Don’t access any of the above vars, except “KeyBoard8”.

The var “KeyBoard8” is an 8-bit Semaphore which can be accessed with the corresponding methods. This semaphore contains as information the rough count of key clicks. It is reset with “ClearKeyBoard8”.

This semaphore is highly recommended if processes are imported to avoid continuous polling of the keyboard. The process sleeps until a key becomes active. Example:

process HandleKeyBoard (20, 20 : idata);

begin

 WaitSema (KeyBoard8);

 case GetKey8 of

 Key1 : ...; |

 endcase;

end;

The content of the semaphore doesn’t show always the real count of key clicks. Sometimes there can be more clicks than the semaphore shows. But it’s certain that at least [keyboard8] clicks have occurred.

3.3.2 Memory property of the keys

The keyboard driver has a build-in memory function. A clicked key will be stored in a bit until it is read-out and cleared with the “KeyRaised8” or “GetKeyRaised8” functions or a ‘ClearKeyBoard8’ is called.

With this a continuous polling of the keys by the user program can be avoided.

Please note that the memory store operation is only executed if a key was pressed and the released. All functions related to the memory feature contain a “RAISED” in their name.

3.3.3 Exported Functions and Procedures

Function ReadKey8 (const key : Keys) : boolean;

The actual state of a key is returned with a true or false. If the key is pressed, the result is true, otherwise it’s false. The parameter Key must be of type “Keys”, i.e. Key1..Keyxx.

Function KeyRaised8 (const key : Keys) : boolean;

The state of a key is returned by a true or false. If a key was pressed and released at least once, then a true is returned. There is no information whether the key is again pressed or not.

Function ReadKeyBoard8 (const row : byte) : byte;
The result of this function is a byte where each bit corresponds with a key. The parameter “row” selects an 8bit keyblock where “0” returns the keys 1..8 and “1” the keys 9..16 etc. The result is the static state of the keys and not the latched state.

Function GetKeyRaised8 : Keys;

This function calls “KeyStatRaised8” and if it gets a true, the first latched key found is returned. If no key is latched the function polls KeyStatRaised8 until a latched key is found. This means, if no key can be found the user program never gains the control, because this function loops endless.

Function KeyStatRaised8 : boolean;

The state of the entire KeyBoard is returned with a true or false. If there was at least one key pressed and latched and this key is not read out by “KeyRaised8” etc., the result becomes true. In other words, the function returns a true if a key was pressed and released and is still latched. With this function a complete KeyBoard read-out by many “KeyRaised8” can be avoided until this function returns a true.

Function KeyStat8 : boolean;
The state of the entire KeyBoard is returned with a true or false. If there is at least one key pressed the result becomes true. In other words, the function returns a true if a key is still pressed. With this function a complete KeyBoard read-out by many “GetKey8” can be avoided until this function returns a true.

Function GetKey8 : Keys;

This function calls “KeyStat8” and if it gets a true, the activated key found is returned. If no key is active the function polls KeyStat8 until an active key is found. This means, if no key can be found the user program never gains the control, because this function loops endless.

Procedure ClearKeyBoard8;

This procedure clears the entire keyboard including the memory“KeyRaised8” and the semaphore.

Procedure KeyBoardEnable8 (ena : boolean);

This procedure enables or disables the entire KeyBoard including the Scanner, Timer etc. So it is possible to disable user key operations or with time critical program parts the SysTick latency (interrupt disable duration of the SysTicks) can be temporary reduced to a minimum.

A disable includes a ClearKeyBoard call. If Timer and Pipe are imported they will also be cleared.

Relation between Buttons and Bits

The button on the cross point of Row1 and Col1 is the least significant bit. Then button on the point Row1/Col2 follows etc.

If the matrix for example has 32 buttons so there are 32 bits relevant, this means that the result of a function call can be Key1..Key32. The button on Row1/Col1 returns Key1. If the layout of the keyboard is 8Cols and 4Rows then the button on Row3/Col4 returns the value Key20.

	
	Row1
	Row2
	Row3
	Row4

	Col1
	Key1
	Key9
	Key17
	Key25

	Col2
	Key2
	Key10
	Key18
	Key26

	Col3
	Key3
	Key11
	Key19
	Key27

	Col4
	Key4
	Key12
	Key20
	Key28

	Col5
	Key5
	Key13
	Key21
	Key29

	Col6
	Key6
	Key14
	Key22
	Key30

	Col7
	Key7
	Key15
	Key23
	Key31

	Col8
	Key8
	Key16
	Key24
	Key32

3.3.4 Debouncing

With SysTick < bounce-time it makes sense not to debounce with each SysTick but to do the debouncing in intervals of x SysTicks. For this purpose there is the optional

Define Debounce = nn; // nn = SysTicks

Which imports an internal interval timer. So the debouncing is done every 5th tick for example. This timer then is also responsible for system wide debouncing, including the MatrixPort and the SwitchPorts.

3.3.5 Key Repeat Support

The driver also provides an optional support of external repeat functions.

In order to implement an auto-repeat function of the keys the controlling part of the application must know how long a key is activated.

To support this each key has its own optional 8bit timer that is incremented in each scan interval as long as the key stays active and stable. The timer stops at 255. If the key becomes released the timer will be reset to zero.

Each key has its own timer. These timers are placed into an array and can be read by the application.

If this option must be used the timers must be imported.

Import SysTick, KeyPort8, ... ;

From KeyPort8 import KeyBoardTimer;

This import defines the timer array in this way:

Var KeyboardTimers : array[Keys] of byte;

Now the application can access the array without any restrictions:

if KeyboardTimers[Key1] > 0 then

 // key is pressed

 ...

endif;

or:

case KeyboardTimers[Key1] of
 0 : // key released

 |

 1..10 : // key initially activated

 |

 else

 // do any repeat action

 endcase;

Note:

The timers are incremented in the scan interval. In most cases this is the once per SysTick.

If Debounce is defined the increments are done in (SysTick * Debounce) intervals.

3.3.6 Full Auto- Repeat Support

The driver also provides an optional internal auto-repeat function.

The KeyboardTimer is used to build the Auto-Repeat function.

The resulting Key events are then stored into a special pipe KeyboardPipe.

In most cases the application does not need any of the standard KeyPort functions. All operations can be done with the Pipe. All of the common pipe function can be used.

If this option must be used then the KeyboardTimers must be imported.

Import SysTick, KeyPort8, ... ;

From KeyPort8 import KeyboardTimer;

The Auto-Repeat function must be declared with a Define:

Define KeyB8Pipe = PipeLen, FirstRepeat, RepeatRate;

Then this variable will be exported:

KeyboardPipe : Pipe[PipeLen] of Keys;

The first parameter PipeLen defines the length of the pipe and hence the number of keystrokes which can be stored in it.

The second parameter FirstRepeat defines the time in msec elapsed before the repeat starts.

The third parameter RepeatRate defines the time in msec between two repeats.

If a key is actually pressed and the debounce time has elapsed the key is immediately written into the pipe. If the key remains active the auto-repeat starts after the FirstRepeat time has elapsed. The repeat writes in RepeatRate msec intervals into the pipe. Each time the ID of this key is written into the pipe. The auto-repeat works until either this key is released or the pipe is full.

If any key becomes inactive the corresponding Key-ID + $80 (8th bit set) is written into the pipe.

The application can access the pipe at any time with:

if PipeStat (KeyboardPipe) <> 0 then

 key:= PipeRecv (KeyboardPipe);

 ...

endif;

3.3.6.1 Support Functions

The auto-repeat operation of the driver can be enabled and disabled at runtime with:

Procedure KeyBoardRepeat (rept : boolean);

Basically in addition all KeyPort8 functions can be used like ClearKeyBoard8. But in most cases this is not necessary.

Also all the pipe related functions can be used like PipeFlush etc. It is also possible to write directly into the keyboard buffer with PipeSend, which was often used in the old MSDOS days.

Attention:
With Auto-Repeat each key has an 8bit Timer. This is an additional memory usage of up to 64 Bytes.

Because all operations (scan, debounce, Timer, Pipe and repeat) are in the SysTick, the SysTick is again heavily loaded. For each 8 key group there is a consumption of about 18usec@16MHz. Worst case (64 keys) this is about 150usec. This must be added to the normal interrupt disable time in the SysTick when the debounce counter elapsed. So the CPU should run at 16MHz or faster.

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\KeyBoardAuto8
[image: image4.png]PAO

PA1

PA2

PA3

PA4

PA5

PAG

PAT

5

N
A4
Y

PD2

PD3

PD4

u— ‘Row

PD5

‘R3'4
"

AVR CPU

(LRI Example 8X4
m

PUTERS

i H“ H|”|‘| |'|‘ AVR Keyboard8
W

schematic KeyBoard8
3.3.7 User Device and KeyBoard8

If an application cannot use the standard ports of an AVR for the KeyBoard-IO it’s possible for the user program to do its own special KeyBoard accesses. The driver controls the scanning and does the debouncing.

Import SysTick, KeyPort8, ... ;

Define

ProcClock
= 16000000; {Hertz}

SysTick
= 10;

StackSize
= $0064, iData;

FrameSize
= $0064, iData;

KeyB8Type
= KeyB8Type = UserPort, 5; {5 Rows, 8 Columns}

Implementation

{$NORETURNCHECK}

UserDevice KeyBoard8IOS : byte;

Begin

 ASM;

 ...

 ...

 EndASM;

end;

The driver passes the register _ACCA (R17) and _ACCB (R16) to the UserDevice function. Register _ACCA contains the actual ROW number as 0, 1, 2, 3, 4 etc. As an alternative the register _ACCB contains the ROW number as a bit position $1, $2, $4, $8, $10, $20 etc. Dependant on the construction of the external hardware _ACCA or _ACCB can be used to read-in a column (COL) .

With a multiplexer _ACCA is preferable, with a latch or similar _ACCB is suitable better.

The application must return in _ACCA the column read result to the calling driver.

The program code must be written in assembler in order to be as fast as possible because this function is called from the SysTick. Because of this only _ACCA and _ACCB can be used for the IO-processing. If additional registers must be used they must be saved with a PUSH and later restored with a POP.

Local variables are forbidden and so are calling system drivers or mathematical operations of the system.

3.4 LCD-Display

3.4.1 LCDPORT

Import and definition of a LCD-port. 1-, 2- or 4-lined displays can be connected. Also versions with 2 enables or two separate modules are possible. Only HD44780, HD66712, KS0070 and KS0073 or compatible controllers are supported.

The LCD-display operates in the 4bit-mode. The lower 4bits of the chosen port are the data bits D4..D7 of the display, port-bit4 is the control signal E, port-bit5 is the signal RS and port-bit6 is the signal RW. Port-bit7 remains unused, unless a second enable signal is needed. In this case bit7 becomes Enable2.

When choosing the port, be aware that this port has to work bi-directionally.

Import SysTick, LCDport;

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

LCDtype
= 44780;
{66712}

LCDport
= PortA;
{Port Address}

LCDRows
= 2;
{2-lined display}

LCDcolumns = 16;
{16-character display}

Attention:

If the LCD-display is imported, a functioning display should be connected correctly, otherwise each access to the LCD takes a long time for the functions to return with a timeout.

For test and debug purpose the polling of the BUSY-Flag of the controller can be disabled by {$LCDNOWAIT}. This switch must be removed when the program is run in a real chip, otherwise the program will not work because the display controller is overrun.

LCDTYPE

This definition can be omitted if the controller type 44780 is used. The type 66712 is somewhat different when using LCDxy and therefore it must be defined explicitly if used.

The LCD line displays equipped with the Samsung controller types KS0070, KS0073 are software compatible with the HD44780 but extremely different with their timings. Because of this the exact type of controller must be declared. Some displays with KS0073 can also be operated with a SPI:

 Define

LCDtype
= 0073;

{KS0073}

LCDrows
= 4;

{4 rows}

LCDcolumns
= 20;

{20 characters/line}

LCDport
= SPI_Soft, PortB, 1, 2, 3, 0;
// PortX, SCK, MOSI, MISO, SS

// LCDport
= SPI;

// Hardware SPI

// LCDport = SPI_C, PortB, 1;

// Hardware SPI, SS_port, SS_pin XMega
LCDROWS

Number of lines of the LCD-display (1, 2, 4). It is required for initialisation. Big display units sometimes offer an additional Enable input. This second control signal, if present, must be declared as the second parameter.

LCDRows = 4, 2;
{4-row Display with 2 Enables}

LCDCOLUMNS

Number of characters per line of the LCD-display (8, 12, 16, 20, 24, 40). It is required for calculating the

physical address in the procedure LCDxy.

LCDcolumns = 16; {16 characters per line}

Functions and Procedures

LCDout

Writes to the LCD DD-Ram and/or CG-Ram with RS=1 and RW=0.

Output of the data at the display. Passing parameter is of the type byte or char. Example:

LCDout ('A');

{indicate char A}

Write (LCDout, IntToStr(i));

LCDinp

Reads of the LCD DD-Ram and/or CG-Ram with RS=1 and RW=1. The result is of the type byte.

c:= LCDinp;

LCDctrl

Writes to the LCD-Control Port with RS=0 and RW=0.

Allows control words to be output to the display, for example DispClear, ReturnHome, OnOff, CursorPos etc.

LCDctrl ($01);

{Clear Display}

LCDctrl ($02);

{Cursor Home}

LCDctrl ($08);

{Display off}

LCDctrl ($41);

{CursorPos 1}

LCDstat

Reads an LCD Status Port with RS=0 and RW=1.

Allows the state of the display to be interrogated. Bit7 contains the BusyFlag and bit 0..6 contain the cursor​ or DD-Ram address. LCDstat exists primarily to get the actual cursor address. The BusyFlag must not be interrogated for the above LCD operations (LCDout, LCDinp, LCDstat), because they are doing it implicit themselves.

repeat until (LCDstat and $80) > 0;
{not necessary}

if (LCDstat and $7f) > 15 then

 LCDctrl (2);

{Cursor Home}

endif;

A Time-out is implemented in the LCD-driver. With a defective or missing display each access is aborted after approx. 2msec. If a time out occurs the function LCDstat returns a byte where bit 7 is high if the busy-bit of the LCDport has a weak Pull-up.

LCDlower, LCDupper

Big multi-row Displays generally need a second enable control for the second controller on the display board. If such a line is present on the display, it must be declared at the definition of LCDrows as the second parameter. The normally unused Bit7 of the control port of the CPU is now used as the second enable control line of the displays. The same is true if two separate modules are used. Both parts are connected in parallel, except for the 2 enables.

The Compiler now offers 2 additional procedures LCDupper and LCDlower. These procedures define which of the 2 Enable-controls become active on all subsequent LCD-accesses. LCDupper ensures that EnableControl1 (PortBit4) is used; LCDlower ensures that EnableControl2 (PortBit7) is used.
In reality two Enable-control behave as two completely independent controllers in the display. The display has to be considered as two separate units on one board!!

All settings, positioning, read- and write accesses etc. are only effective for the controller which is enabled.

As an alternative to one big display with 2 enables it’s possible to connect two smaller separate displays in parallel with separate enables. These displays must be of the same type.

Procedure LCDupper;
Procedure LCDlower;

LCDxy

Positioning of the Cursors to column[x] and row[y]. Both values count from “0“.
Procedure LCDxy (column, row : byte);
 LCDxy (0, 0);

(* Cursor to line 0 and column 0 *)
 LCDxy (2, 1);

(* Cursor to line 1 and column 2 *)

LCDcursor

Definition of the Cursor mode. The cursor can be set disabled, static on or flash. The first parameter switches cursor on or off, the 2nd parameter sets flash on/off.

Procedure LCDcursor (on, blink : boolean);
 LCDcursor (false, false);

(* Cursor off *)
 LCDcursor (true, false);

(* Cursor on, no blink *)
 LCDcursor (true, true);

(* Cursor on, blink *)

LCDgetXY

Read back the actual cursor position:

The High-Byte of the result then contains the Y-position (line) and the Low-Byte contains the X-position (column).

Function LCDgetXY : word;

LCDclr

Deletes the contents of the display and moves the Cursor to position 0,0
Procedure LCDclr;

(* erase display, cursor to 0, 0 *)
LCDclrLine

Clears the desired Line(0..n) and places the Cursor to the start of the line

Procedure LCDclrLine (Line : byte);
(*erase current line to end *)

LCDclrEol;

Clears the current line
from cursor position to line end. The cursor position is unchanged.

Procedure LCDclrEOL;

(* erase current line to end *)

LCDhome

Moves the Cursor to position 0,0
Procedure LCDhome;

(* cursor to 0, 0 *)

LCDoff

Sets the display off, contents, positions and mode stay unchanged.
Procedure LCDoff;

(* switch display off *)
LCDon

Sets the display on and sets cursor to ON and BLINK
Procedure LCDon
(* switch display on *)
LCDcharSet

LCDcharset stores a self defined graphic character into an unused location [0..15] in the Character Generator Ram of the display module. The character can be displayed with the corresponding address. To define a special char the user must supply the desired address or the ordinal value of this character. Then follow 8 bytes which represent the 8 horizontal pixel rows from top to bottom. Because the character width is 5 pixel, only the 5 lsb’s are relevant. The Bit0 represents the right most pixel.

Procedure LCDcharset (loc : char; b1, b2, b3, b4, b5, b6, b7, b8 : byte);

Example how to generate and display the special char “degree“ with the ordinal number of 10.

LCDcharset (#10, $1C, $14, $1C, $00, $00, $00, $00, $00);

LCDout (#10);

(* display user defined degree char *)

LCDcharSetP

The storing of special user chars into the LCD controller is supported by an additional and more common function. In contrary to the existing function character defines (array[0..7] of byte) can be placed into RAM, ROM or EEprom. The pointer must point to any structure which contains 8 bytes. "srcArea" defines the kind of source: 0=RAM, 1=EEPROM, 2=FLASH.

Procedure LCDcharsetP (const loc : char; srcArea : byte; ptr : pointer);

{$LCDNOINIT}

This compiler switch disables the automatic initialisation of the LCD controllers after a program start or reset. The application decides later at runtime, whether or when an initialisation takes place by invoking the system procedure “LCDsetup“.

LCDsetup

This procedure initialises the LCD-controller on condition that the compiler switch {$LCDNOINIT} is activated before the define block. Then after the calling of “LCDsetup“ the display becomes accessible.

Attention:

The compiler switch and this procedure work together and have to be used together. This construction is an Option and only relevant for special purpose.
LCD-Split

The connection of a LCD display with the standard driver "LCDport" is limited to one port. So all control and data lines must be connected to one port. But sometimes there is no complete port left and so it is

necessary to split the lines over two ports. One port can provide the control lines and another one can handle the 4 data lines.

The standard driver definition is this:

LCDport = PortC;
 // PortC 0..6(7) = D4, D5, D6, D7, E, RS, RW (, E2 opt.)

With port splitting the define must be extended:

LCDport = PortC, 2, PortA, 3; // control port, bit, Data port, bit

The first parameter defines the control port with its first used bit. The order of the bits are fixed but

different to the non-split driver: RS, RW, E (, Enable2 optional).

The data port must come next with its first used bit. The order of the bits also is fixed: D4, D5, D6, D7.

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\LCDsplit

[image: image5.png]anol

3

oo

romi
=
—
P .
[ty Conmesst
= Y
s
g OPTIONAL
S
550, SECOND
o
£330 PSP DISPLAY
i
e
o
]
veco—3lo
cru & veo
veo
© P
ao0pa0 222 b
- aoteat 5502
e conmesst
2 EEE oseas B oo
75 FDTRD. E
e
5
12 01 8%}
e 0 ke
S e 222308 cruar
S sero s
T PBhocia Arer 04T
- L
i Cm
Lesomo Atzmos D
ERle veco 500
S Teano Atsmos 3
TSN Ateeor
g B
2 Sesosi mioeo
T TeoMes momos 1
e “aw
Y

LCD Display Test

Pascalscm

COMPUTERS Tel0720amized i YT

Siiicte

574900 Bc Rappenau Fax 072651912424

schematic LCD
3.4.2 User defined LCD-IO (LCDUserPort)

As on option the user can also define his own hardware driver

Example program:
An example is in the directory ..\E-Lab\AVRco\Demos\LCD_IOS

With the import of the LCDUserPort it is necessary that the user must provide the entire display initialisation within the obligatory driver "UserDevice LCDIOS".

If the display operates in 8bit mode, now it is possible to call the system function "LCDSETUP" which does the initialisation of the display thru "LCDIOS".

To use this the compiler switch {$LCDNOINIT} must be activated in order to disable the automatic initialisation.

3.4.3 User defined LCD characters

The AVRco system contains a specific character generator tool "LCDCharEd.exe" which is intended for desihning special chars not present in the character generator of the LCD controller.
With this tool characters can be interactively designed and the necessary code can be copied into the source with "Shift/Insert".

[image: image6.wmf]

This tool is also available in the tool bar of the IDE.
The generated special chars can be processed with the Procedure LCDcharset.

[image: image7.png]o KnosRiGHT
oo uduss voo 10 _a SO
° 15 13 ssg A = $01 ERY
wo oo g 71 —
et
s s Mg et -
213 ompe—] = sp - e - .
% —H & g —
STB ouT3 - o
omE—H o et <
115 SMIE Z e =
82 Shs o g
Suomr
oo ours 2 B] E
S
Multiplexed version
° Driver: Disp7s, mux
T o P a0
) e 5% 5%
=2 = o o
o o 55 55
2 2 =2 =2
]] N cmal W A Samal W A
o S5 S5t 5%
Foo Fo £]
s

vee o veo
tlice v
ouT! =
s, o
7 Tz
T SR
Hae omn
8 m
o] g ST
o o
v : 5
R
N L
e o

coMPUTERS

el 0720891260

574900 Bc Rappenau Fax 0728912424

Display 7seg Test

Pascalscm

Copyright oy E-48

S Hov-1008

The charsets build with this tool can be stored onto the disk with the extension “.lchr“ for future use.

3.5 LCD BarGraph Driver

Basics

The representation of values on a display (LCD, 7seg etc) is usually numeric, so measurement results etc. can be displayed in their full precision. The numeric display mode also has some big drawbacks. The number must be interpreted and weighted in the head of the viewer. Finding a trend, e.g. raising or falling, as well needs more computing power from the viewer.

A graphical representation is much more imprecise but the viewer has much less analysis to do than with the numeric one. This is true especially with the evaluation of large or small changes, rising or falling. Here there is a big advantage for the graphical representation.

Graphical representation of numeric values usually are realized with pie charts or bar graphs. With simple displays like the LCDs only bar graphs can be used.
Introduction to LCD BarGraph
This implementation either uses the driver LCDport or the driver LCDmultiPort. To use the BarGraph either the driver LCDport or the driver LCDmultiPort must be imported. The standard LCDport driver can coexist besides the MultiPort driver.

Up to 4 bar graphs can be defined where each graph has its own “coordinate“ system:

Y-Position
line

X-Start
character

X-Len

character

Scale

byte

Each graph has to be connected logically to a LCD driver by its define statement. It’s possible to route the graphs 1..3 to the LCDmultiPort and the graph 4 to the LCDport.

With the LCDmultiPort a graph can be placed at runtime into each of the 8 possible physical displays.

For displaying the Bar Graphs the first 5 of 8 user definable characters (#0..#4) of the displays are used by the driver. Each display that must show a Bar Graph then must be set up by a special BarGraph Init.

These user characters then are used by the system and must not be overwritten by the user’s application.

The driver accepts only bytes as control values. Such a byte then is recalculated by using the graph’s scaling and coordinate factors and the result is displayed by the BarGraph.

Attention:
Some exotic LCD controllers (e.g. Samsung S6A0032) are basically compatible to the standard Hitachi controller 44780 but support none or only 2 free definable characters. So there is no way to use this driver for implementing a bar graph with these controllers. In this case the application must implement it itself by using the block character #255 ($FF).

Imports
As usual with the AVRco system the driver must be defined. In addition the desired LCD driver must be imported and defined.

Either import the LCD driver LCDmultiPort and the I2C/TWI driver or import the LCDport driver.

SysTick is not used.

Import
I2Cport, LCDmultiPort;

or

Import
TWImaster, LCDmultiPort;

or

Import
TWInet, LCDmultiPort;

// use Master mode

or

Import
LCDPort;

Defines

Depending on the I2C or TWIport, this must be defined. As with the standard LCDport, the LCD type used must be defined.

Example for I2Cport:

Define
ProcClock
= 8000000;

{8Mhz clock }

I2Cport
= PortC;

{port used}

I2Cdat
= 7;

{bit7-PortC}

I2Cclk
= 6, 4;

{bit6-PortC, optional delay 4}

LCDmultiPort
= I2C_Soft;

{use Software I2Cport}

LCDTYPE_M
= 66712;

{LCD controller type}

LCDrows_M
= 2;

{2 rows}

LCDcolumns_M
= 20;

{20 chars per line}

Example for TWImaster:

Define
ProcClock
= 8000000;

{8Mhz clock }

TWIpresc
= TWI_BR100;

{100kBit/sec alt. TWI_BR400}

LCDmultiPort
= I2C_TWI;

{use TWIport}

LCDTYPE_M
= 44780;

{LCD controller type}

LCDrows_M
= 4;

{4 rows}

LCDcolumns_M
= 16;

{16 chars per line}

Example for TWInetMaster:

Define
ProcClock
= 8000000;

{8Mhz clock }

TWInode
= 05;
{default address in slave mode}

TWIpresc
= TWI_BR400; {400kBit/sec alt. TWI_BR100}

TWIframe
= 4, iData;
{buffer/packet size}

TWIframeBC
= 6;
{option broadcast buffer/packet size}

TWInetMode
= Master;

LCDmultiPort
= I2C_TWI;

{use TWIport}

LCDTYPE_M
= 0070;

{LCD controller type}

LCDrows_M
= 1;

{1 rows}

LCDcolumns_M
= 12;

{12 chars per line}

Example for LCDport:

Define
ProcClock
= 8000000;

{8Mhz clock }

LCDport
= PortB;

{use Port B}

LCDTYPE
= 0070;

{LCD controller type}

LCDrows
= 2;

{2 rows}

LCDcolumns
= 20;

{20 chars per line}

After the complete Import and Define of the LCD driver the Define of the LCD BarGraphs must follow:

Define ProcClock = 8000000;

{8Mhz clock }

...

...

LCDBargraph1 = LCDmultiPort;

LCDBargraph2 = LCDmultiPort;

LCDBargraph3 = LCDmultiPort;

LCDBargraph4 = LCDmultiPort;

// LCDBargraph4 = LCDPort;

LCDBargraph1..4

Imports the coordinate system for a BarGraph and defines which type of LCD driver has to be used with it. The required basic driver must also be imported and defined.

3.5.1 Functions
The definition of a bar graph publishes one/two LCD dependent common init functions and two BarGraph functions:

LCDbarInit_P

Init for the standard LCDport. Each display must be initialised once. With the driver LCDport this is done internally at Power On and CPU-Reset. In order to show the 5 Bar graph special characters they must be stored into the character RAM of the LCD controller. This procedure loads these characters:

Procedure LCDbarInit_P;

LCDbarInit_M

Init for the LCDmultiPort. Each display must be initialised once. Unlike the standard driver LCDport this not automatically done at Power On or CPU-Reset. The application must initialise the display with LCDsetup_M . After this the Bar Graph initialisation can follow. In order to show the 5 Bar graph special characters they must be stored into the character RAM of the LCD controller. This must be done with this procedure after the display initialisation because LCDbarInit_M has no display-num parameter to set the target display. The current active display is always used. If there are doubts about this one can use the procedure LCDsetPort_M to select the desired display.
Procedure LCDbarInit_M;

LCDbarSet1..4

Before a Bar graph can be used the special character set must be loaded with the procedure LCDbarInit described above. Also the coordinate system of a Bar Graph must be initialised at least once with LCDbarSet. The parameters of this function determine the line, position and size of the Bar Graph on a display.

Procedure LCDbarSet1 (const Line, PosA, Len, Scal : byte);

 LCDbarSet1 (0, 8, 8, 100);

Line
defines the display line 0..3

PosA
defines the X-start position, in characters

Len
defines the total graph length in characters

Scal
defines the scaling, i.e. the right end value of the Bar Graph

The sum of PosA + Len must not exceed the line length (columns) of the display.

The value of Scal should be in the range of 50..255 to get best results.

LCDbarOut1..4

Changes the Bar Graph to the new value and displays it. The parameter passed is scaled based on the coordinate system of this Bar Graph.

With the LCDmultiPort the actual display is always rewritten. If this is unknown one can use the procedure LCDsetPort_M to select the desired display.
Procedure LCDbarOut1 (const b : byte);

 LCDbarOut1 (50);

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\LCD_BarGraph
3.6 LCDmultiPort Driver with up to 8 LCDs

Basics

Usually alpha-numeric LCD-displays are directly connected to a port of the CPU and work in the 4- or 8bit mode. With two or more displays the number of required port pins easily exceed the available pin count of a CPU. In addition the necessary cables with at least 10 lines/LCD require a lot of connectors on the board.

The solution of this problem is to use LCDs with a Bus-system, mainly I2C. But these displays are not cheap and also there are only a few types available.

If we don’t use intelligent displays with I2C bus we “simply“ have to extend the count of the ports of the CPU by I2C I/O-expander chips. So each expander chip can handle one LCD device. Only 2 port pins of the CPU are used, regardless how much displays are connected.

Introduction to LCDmultiPort

This implementation either uses the software I2C-driver (I2Cport) or the internal TWI (I2C) port of the AVR mega CPUs. To use the LCDmultiPort either the driver I2Cport or the driver TWImaster or the driver TWInet must be imported, the latter in Master mode. The standard LCDport driver can coexist with the MultiPort driver. With the XMegas instead of the TWI one of the TWI ports must be selected: TWI_C, TWI_D, TWI_E or TWI_F.
As the I2C port-expander one PCA9555 from Philips must be used for one LCD. This chip can be present up to 8 times on the I2C bus. The wiring between the PCA9555 and LCD is fixed by the driver and can be found in the schematic below. The PCA9555 can run up to 400kBit/sec on the I2C Bus. Unlike its predecessors each of the two 8bit ports can be directly read, written or reprogrammed without any affect on the other parts of the chip.

The driver LCDmultiPort controls its remote ports PCA9555 in such a way that the LCDs are directly connected in the 8bit mode to a port of the CPU.

The driver’s functions are very similar to the functions of the driver LCDport but with the extension that with each function call the desired display number is expected (exception: LCDout).

3.6.1 Technical data

I2C Port
Software I2C imported by I2Cport

or
CPU-TWI imported by TWImaster

// Mega
or
CPU-TWI imported by TWInet in Master mode

// Mega
or
CPU-TWI imported by TWI_C, TWI_D, TWI_E, TWI_F

// XMega
Displays
up to 8 devices, controller 44780, 66712 or KS0070

8bit mode, only one enable line possible. All displays must be of the same type:

controller, line count, column count.

Hardware
I2C I/O-Expander chip PCA9555 from Philips, 1 piece per display

I2C addresses
The PCA9555 reside at the bus-addresses $20..$27

where LCD1 has the address $20, LCD2 has $21 etc.

The PCA9555 have three address pins or bits which must be wired in the correct way.

Imports

As usual with the AVRco system the driver must be imported and defined. In addition the desired I2C/TWI driver must be imported and defined. SysTick is not used. All functions return after a timeout if no display is available.

Import
I2Cport, LCDmultiPort;

or

Import
TWImaster, LCDmultiPort;

or

Import
TWInet, LCDmultiPort;

// use Master mode

XMega

Import TW_C, TWI_E, LCDmultiPort;
Defines

Dependent of the I2C or TWIport, this must be defined. As with the standard LCDport, the LCD type used must be defined.

Example for I2Cport:

Define
ProcClock
= 8000000;
{8Mhz clock }

I2Cport
= PortC;
{port used}

 I2Cdat
= 7;
{bit7-PortC}

 I2Cclk
= 6, 4;
{bit6-PortC, optional delay 4}

 LCDmultiPort
= I2C_Soft;
{use Software I2Cport}

 LCDTYPE_M
= 66712;
{LCD controller type}

LCDrows_M
= 2;
{2 rows}

LCDcolumns_M
= 20;
{20 chars per line}

Example for TWImaster:

Define
ProcClock
= 8000000;
{8Mhz clock }

 TWIpresc
= TWI_BR100;
{100kBit/sec alt. TWI_BR400}

 LCDmultiPort
= I2C_TWI;
{use TWIport}

 LCDTYPE_M
= 44780;
{LCD controller type}

LCDrows_M
= 4;
{4 rows}

LCDcolumns_M
= 16;
{16 chars per line}

Example for TWInetMaster:

Define
ProcClock
= 8000000;
{8Mhz clock }

 TWInode
= 05;
{default address in slave mode}

TWIpresc
= TWI_BR400; {400kBit/sec alt. TWI_BR100}

TWIframe
= 4, iData;
{buffer/packet size}

 TWIframeBC
= 6;
{option broadcast buffer/packet size}

 TWInetMode
= Master;

 LCDmultiPort
= I2C_TWI;
{use TWIport}

 LCDTYPE_M
= 0070;
{LCD controller type}

LCDrows_M
= 1;
{1 rows}

LCDcolumns_M
= 12;
{12 chars per line}

Example for XMega:

Import TWI_C;
Define
 OSCtype
= int32MHz, PLLmul=4, prescB=1, prescC=1;

 TWIprescC
= TWI_BR100;
{100kBit/sec alt. TWI_BR400}

 LCDmultiPort
= TWI_C;

{use TWIport}

 LCDTYPE_M
= 44780;

{LCD controller type}

LCDrows_M
= 4;

{4 rows}

LCDcolumns_M
= 16;

{16 chars per line}

LCDmultiPort
Requests the I2C-port to use, either software-I2C with I2C_Soft or on chip TWIport with I2C_TWI. The required basic driver must also be imported and defined.

LCDTYPE_M

Defines the LCD-controller type HD44780, HD66712, KS0070 or KS0073

LCDrows_M
Defines the line or row count of the display 1, 2 or 4

LCDcolumns_M
Defines the column count (characters/row) of the display 8, 12, 16, 20, 24 or 40.

3.6.2 Types and Functions

The import of LCDmultiPort exports an enumeration type which must be used for the driver’s function calls:

Type TLCD_num = (LCD_m1, LCD_m2, LCD_m3, LCD_m4, LCD_m5, LCD_m6, LCD_m7, LCD_m8);

LCDsetup_M

Each connected display must be initialised at least once. Unlike the standard driver LCDport this doesn’t happen at Power On or CPU-Reset. After this initialisation the display stays in the off-mode. The display must be switched on with function LCDcursor_M.

If successful LCDsetup_M returns with a true, otherwise a false is returned.

Function LCDsetup_M (const LCD_num : TLCD_num) : boolean;

 If not LCDsetup_M (LCD_m1) then ...

 Error …

 Endif;

LCDon_M

Switches the display ON and sets the cursor to ON and BLINK

Procedure LCDon_M (const LCD_num : TLCD_num);

 LCDon_M (LCD_m6);

LCDcursor_M

Switch the display ON and setup of the cursor mode. The cursor can be set off, static on or flash. The 2nd parameter switches the cursor ON or OFF, the 3rd parameter sets flash on/off.

Procedure LCDcursor_M (const LCD_num : TLCD_num; on, blink : boolean);

 LCDcursor_M (LCD_m2, false, false);
(* Cursor off *)

 LCDcursor_M (LCD_m3, true, false);

(* Cursor on, no blink *)

 LCDcursor_M (LCD_m4, true, true);

(* Cursor on, blink *)

LCDOut_M

Writes into the LCD DD-ram or CG-Ram and displays this data. The parameter is of type char. Because this procedure also must interact with Write, there is no display select parameter LCD_num. The writing to the display is always directed to the currently selected one. The desired display can also be explicitly set with LCDsetPort_M.

Procedure LCDout_M (const c : char);

 LCDout_M ('A');

{show char A}

 write (LCDout_M, IntToStr (i));
{string output}

LCDclr_M

Deletes the contents of the display and moves the Cursor to position 0,0

Procedure LCDclr_M (const LCD_num : TLCD_num);

 LCDclr_M (LCD_m5);

LCDclrEOL_M

Deletes the actual line from cursor position to line end. The cursor position stays unchanged.

Procedure LCDclrEOL_M (const LCD_num : TLCD_num);

 LCDclrEOL_M (LCD_m6);

LCDclrLine_M

Deletes the passed line number (0..n) and moves the cursor to the line start position.

Procedure LCDclrLine_M (const LCD_num : TLCD_num; const line : byte);

 LCDclrLine_M (LCD_m6, 1);
LCDhome_M

Moves the cursor to position 0,0

Procedure LCDhome_M (const LCD_num : TLCD_num);

 LCDhome_M (LCD_m7);

LCDxy_M

Positioning of the Cursors to column[x] and row[y]. Both values count from “0“.

Procedure LCDxy_M (const LCD_num : TLCD_num; x, y : byte);

 LCDxy_M (LCD_m8, 0, 0);

(* Cursor to line 0 and column 0 *)

 LCDxy_M (LCD_m1, 2, 1);

(* Cursor to line 1 and column 2 *)

LCDgetXY_M

Read back the position of the cursor. The line (y) is in the high-byte and column (x) in the low-byte of the result.

Function LCDgetXY_M (const LCD_num : TLCD_num) : word;

LCDoff_M

Sets the display OFF. Contents, positions and mode stay unchanged.

Procedure LCDoff_M (const LCD_num : TLCD_num);

 LCDoff_M (LCD_m2);

LCDsetPort_M

Optional, switches the driver to a specific LCD. Only makes sense with LCDout_M.

Procedure LCDsetPort_M (const LCD_num : TLCD_num);

 LCDsetPort _M (LCD_m2);

LCDgetPort_M

Optional. The function returns the current selected LCD-Port.

Function LCDgetPort_M : TLCD_num;

LCDctrl_M

Optional low-level function. Writing to the LCD-ControlPort with RS=0 and RW=0.

Used to output control words to the display, for example DispClear, ReturnHome, OnOff, CursorPos etc.
Procedure LCDctrl_M (const LCD_num : TLCD_num; const b : byte);

 LCDctrl_M (LCD_m1, $01);

{Clear Display}

 LCDctrl_M (LCD_m2, $02);

{Cursor Home}

 LCDctrl_M (LCD_m3, $08);

{Display off}

 LCDctrl_M (LCD_m4, $41);

{CursorPos 1}

LCDinp_M

Optional low-level function.

Reads the LCD DD-Ram and/or CG-Ram with RS=1 and RW=1. The result is of the type byte.

Function LCDINP_M (const LCD_num : TLCD_num) : byte;

 b:= LCDinp_M (LCD_m5)

LCDstat_M

Optional low-level function. Reads an LCD Status Port with RS=0 and RW=1. Interrogates the state of the display. Bit7 contains the BusyFlag and bits 0..6 contain the cursor or DD-Ram address. LCDstat_M exists primarily to get the actual cursor address. The BusyFlag must not be interrogated for the above LCD operations (LCDout, LCDinp, LCDstat), because they do it implicitly themselves.

Function LCDstat_M (const LCD_num : TLCD_num) : byte;

 repeat until (LCDstat_M(LCD_m1) and $80) > 0;
{not necessary}

 if (LCDstat_M (LCD_m1) and $7f) > 15 then

 LCDctrl_M (LCD_m1, 2);

{Cursor Home}

 endif;

LCDcharset_M

LCDcharset stores a self defined graphic character into an unused location [0..15] in the Character Generator Ram of the display module. The character can be displayed using the corresponding address. To define a special char the user must supply the desired address or the ordinal value of this character. Then follow 8 bytes which represent the 8 horizontal pixel rows from top to bottom. Because the character width is 5 pixel, only the 5 lsbs are relevant. The Bit0 represents the right most pixel, Bit4 the left most.

Procedure LCDcharset_M (LCD_num : TLCD_num; loc : char; c1, c2, c3, c4, c5, c6, c7, c8 : byte);

LCDcharset_M (LCD_m5, #10, $1C, $14, $1C, $00, $00, $00, $00, $00);

LCDout_M (LCD_m5, #10);

(* display user defined degree char *)

Note:

Most LCD controllers support 16 private characters but can only display the first 8.

LCDcharset_MP

This procedure is a more general alternative to the version above. With srcArea the source type must be selected, 0=RAM, 1=EEPROM, 2=FLASH. The pointer must point to a structure (array[0..7] of byte) in the selected memory area.

Procedure LCDcharset_MP (LCD_num : TLCD_num; loc : char; srcArea : byte; ptr : pointer);

3.6.3 Unused Port Pins of the LCD Control Port

The upper (MSB) 5 bits of the LCD control port are not affected by the driver. These pins are always set as inputs and can be read by the application.

LCDportInp_M

This function reads the upper 5 input pins of the control port. The lower 3 bits (E, RW, RS) are always returned as 0. The parameter LCD_num is not stored and so doesn’t influence the other LCD operations.

Function LCDportInp_M (const LCD_num : TLCD_num) : byte;

3.6.4 Multi-Processing with the TWI Port

In an application with Processes and/or Tasks in many cases the TWI-Bus is not only used as a network but also for other purposes (LCD, Ports etc). If then different processes access the TWI heavy conflicts are implied because such sequential drivers (I2C, TWI, UART etc) are not re-entrant, i.e. they are not interruptible and cannot re-entered. Because of this the TWI port works with a semaphore of the type DeviceLock.

TWI_DevLock : DEVICELOCK;

TWI_DevLockTN : DEVICELOCK; // XMega
The TWI driver observes and controls this semaphore. At the entry into the driver the semaphore is checked to see whether the driver is locked or not. If it is free the semaphore becomes active (driver locked) and the job will be executed. After finishing the job the semaphore is released (unlocked).

If the driver is locked (occupied) at entry time then a Schedule is executed and the calling Process is put into the Schedulers queue. In one of the next few scheduling slots this Process is restarted and again checks this semaphore. This is repeated until the semaphore becomes free (unlocked).

Important:
Because of the abortion of a TWI access through “Schedule“ Tasks should not use TWI accesses. A schedule completely aborts and exits a Task and so a job will not be executed if a locked semaphore is found.

It is possible to set a flag if the Task solved the job successfully. If the flag is not set the Task must again be initiated to repeat this job. But this is somewhat complicated and should be avoided.

Furthermore it must be clear that this locking only works at byte level. For example if strings are sent to the LCD then the application is still responsible ensuring that the string transfer is not disturbed by another process which also wants to access the LCD.

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\LCDmulti

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_LCDmulti

[image: image8.png]KINGERIGHT

vee

lsc:
i0u

i

&

et
A - e >
2 D oo
R R F c - so4 s 3
Non-Multiplexed version L] I 3
A - Di 2 F o= 520 o at
Driver: Disp7s, nonmux @ - s
Do 2 fs0
ultra low radiation
<
o1
oo ramcses MSD e LsD
20 fee e w1 © [oc ™ 102 Ve es wos
PPERE PN anlte 192 e a a1 A
14 A 18 14 T2 15 B 14 17 T 8
]S o i C]S P 14 C NG @73 G C
pPeK @4 e n . Em e 7S S o
T wg—+ g DeE @S f s S EE
T EH— hrr T S i R EE— brE
TaE =5 HiE o BOSE ot B i BoE E—H o=l
Voco 0 8 a6 7] oo veco 3 i a6 1 Lo Veco 3 am ao e Tl
;A S . & [s
GND. Ko GND K £ GnD. Ko
@ S S

i P

COMPUTERS Tel 072081240
574900 526 Rappenay Fax 072631312424

Display 7seg Test V2

Pascal.scm

Copyright oy £:48

T

atum: o-Seo-1e05

Fame, = romen

schematic LCDmulti
3.7 LED 7seg Display

3.7.1 Disp7sPort, Mux|NonMux

Import and definition of a port for a 7segment LED display with up to 8 positions/Digits.

Multiplexed:

The display is prosecuted in the Common-Cathode Multiplex Modus. So 5 bits of an Output-Port are required as well as two serial driver-modules, one for the segments, for example UCN5895, and one for the digits, for example UCN5841.

The On-time of a digit is one SysTick. So the time for a complete Refresh id: Digits x SysTick (msec). With a SysTick of 10msec and 4 digits it results a refresh rate of 4 x 10msec = 40msec = 25Hz.

Non-Multiplexed:

This mode uses one shift register and 8 resistors for each digit. The advantage of this mode is ultra low radiation and therefore no EMR problems.

The Bit0 of the port is connected to the corresponding CLOCK-input and the bit1 to the corresponding data-input of both drivers. Bit2 is the Latch-Signal for the digit-driver and the bit3 is the Latch-Signal for the segment-driver. Bit4 is the output-enable-signal for the digit-driver (multiplexed).

Import
 SysTick, Disp7sPort;

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

Disp7sPort
= PortA, Mux;
{Port Adresse, multiplexed}

//Disp7sPort
= PortA, NonMux;
{Port Adresse, not multiplexed}

//Disp7sPort
= PortA, Mux, startpin;
{Port Adresse, multiplexed with Startpin}

//Disp7sPort = UserPort;
{User defined IO-driver, multiplexed}

DispMode
= ShiftLeft;
{links durchschieben}

DispDigits
= 4, iData;
{4-stelliges Display}

Disp7Port with startpin

The necessary 3..5 Bits used by the 7SegPort must not start with bit0. These bits can be placed anywhere into the used port on condition that all used bits fit into this port, starting with this "Startpin", in a consecutive order. Defining of this bit is optional. If omitted placement starts with bit0 of the port.

Ii UserPort is selected driver always works in multiplexed mode and the application must provide the UserDevice function Disp7sIOS.

DispMode

Defines the action of the displays on adding a new char with DispOut. Wrap places the internal insert cursor when reaching the end of the line to position 0 (left). With ShiftLeft the cursor stays always at right and the character is inserted here, the rest of the contents are shifted one position to the left. With ShiftRight this behaviour is exactly the opposite.

An additional option with the multiplex mode is that the display blank line can be disabled. This signal is not necessary if double buffered shift registers are used, because these types don’t produce “ghost pictures“. The blank-Pin is then unused and free for other purposes.

Define DispMode = ShiftLeft, noBlank;
{shift left}

DispDigits

Number of digits of the display (1..8) and size of the symbol buffer. It is required for the initialisation.

Functions and Procedures

DispOut

Write into the display buffer. Passing parameter is of type byte or char. The symbol which is at the actual location of the display is overwritten with the new one. The interface can also be used with Write. See also description of LCD-display and “Write“.

Because a 7seg-display is not able to represent all symbols of the alphabet, some symbols are represented as spaces. Control symbols are ignored, except ‘CR’ and ‘LF’.

Linefeed (LF = $0A) deletes the display and sets the writing cursor to the position ‘0’. Return (CR = $0D) sets the writing cursor to the position ‘0’, but does not change the display. With wrap mode if the writing cursor has reached the last position, it is automatically set to ‘0’. With the shift modes the content is shifted one digit to right or left and the new char is added.

DISPout ('A');

{represent char A}

Write (DispOut, #10 + ‘Hello’);

DispBlink

The whole display blinks or blinking is switched off. The passing parameter is of the type boolean.

DISPblink (true);

{Blink on}

DispDigBlink

A single digit blinks or blinking is switched off. The passing parameter is of type byte and indicates the position or the digit (cell). If the digit is blinking, blinking is switched off and vice versa

DISPDigBlink (1);

{Blinking on/off}

DispPos

The writing cursor is positioned at a certain location. The passing parameter is of the type byte and indicates the position or the digit (cell). The counting order of the digits is from ‘0’ (left) up to ‘Disp7sPort’ -1 (right);

DISPPos (0);

{Cursor Home}

DispClear

The whole display is deleted. The writing cursor is positioned to the location ‘0’. All actual blinking functions are reset.
DISPclear;

{Delete + Cursor Home}

Disp7Test

Test function. It can be used to switch ON all segments of the display(s):

Procedure Disp7Test;
DispClEol
The display is deleted from the actual position of the cursor up to the end of line. The position of the writing cursor is preserved.

DISPclEol;

{Delete up to end of line}

Disp7Buff

Special user defined characters can be placed directly into the refresh buffer by addressing this buffer as an array[0..DispDigits-1] of byte

Disp7Buff[3]:= $63;

{display degree symbol}

DispRefresh

If a direct write into Disp7Buff is done, with NonMux mode the external shift registers are not updated Because of this the user must force an update with this procedure in order to make the changes visible.

DISPrefresh;

{physical update of the drivers}

_Disp7sTab
If special characters or a special character set is needed the internal character set can be overwritten. In this case an array[0..60] of byte must be defined. The first entry is the space ($20). The system always subtracts $20 from each character passed by DispOut.

There are 2 possibilities for implementing this charset.

Define an array with constants by direct keyboard input:

_Disp7sTab : array[0..60] of byte = (0, 23, 53, 12, .., ..,);
Generate an arrays of constants by reading a file:

_Disp7sTab : array[0..60] of byte = 'Disp7table.bin';

This file must contain all 60 possible characters in binary form.

UserPort
If the UserPort was selected by a define so the application must provide this device driver:

UserDevice Disp7sIOS(digit, segment : byte);

begin

 …

end;

The parameter digit passes the digit number (position) and the parameter segment passes the active segments of this digit. Each of the digit bits controls one out of eight possible digits.
The Bit0 relates to Digit0 = left most digit etc. Active bits switch on the related digit or segment.
The segment definition follows the usual rules shown in the schematics below:

SegmentA
= $01

SegmentB
= $02
SegmentC
= $04
SegmentD
= $08
SegmentE
= $10
SegmentF
= $20

SegmentG
= $40

DecimalPnt
= $80

The character “C” then results in the value $39 in the parameter segment. For example:

Digit = $01

Segment = $39

The left most digit then displays “C“.
An example program AVR Disp7sUser is in the Demos directory in Disp7sUser.

schematic Disp7s (multiplexed)

[image: image9.png]E-LAB Computers

e So001_sec e

H

Yy

[image: image10.png]revt

schematic Disp7s2 (non multiplexed)

3.8 LED 14seg Display Driver

Overview

Although LCD type of displays are standard because they are cheap, flexible and easy to use, 7 or 14segment LED displays are still used. In spite of their limited display possibilities they are used when character size (up to 20cm/4inch height) or high brightness or very good readability at long distances is needed. This is still the domain of LED displays and they have a ”bright” future. The 14 segment types in particular offer a better flexibility and readability compared to their smaller brothers, the 7segment types.

14 segment LED displays are connected to a CPU either through shift registers or with special display driver chips. This driver implements the shift register type including the multiplexing operation.

By using ultra bright and low current types the resulting magnetic environment pollution (EMI) caused by the multiplexing are in an acceptable kevel, because the current peaks can be very low >= 15mA

Introduction Disp14sPort

The driver controls one 14 segment LED display with up to 8 positions/Digits.

The display is controlled in the Common-Anode Multiplex mode. So 5 bits of an Output-Port are required as well as three serial driver-modules, two for the segments, for example UCN5841, and one for the digits, for example 74HC595. Because the HC595 cannot drive a digit it must be supported by small power drivers.

The On-time of a digit is one SysTick. So the time for a complete Refresh is: Digits x SysTick (msec). With a SysTick of 10msec and 4 digits it results a refresh rate of 4 x 10msec = 40msec = 25Hz.

Bit0 of the used CPU port is connected to the corresponding CLOCK-input and bit1 to the corresponding data-input of both drivers. Bit2 is the Latch-Signal for the digit-driver and the bit3 is the Latch-Signal for the segment-driver. Bit4 is the output-enable-signal for the digit-driver.

The wiring between the CPU, the driver chips and the 14 segment display is fixed by the driver and can be found in schematic below.

The driver functions are similar to the functions of the driver Disp7sPort.

Imports

As usual with the AVRco system the driver must be imported and defined.

SysTick is also used.

Import SysTick, Disp14sPort;

Defines

As with the standard 7seg-Port, the used display size and count must be defined.

Define
ProcClock
= 8000000;

{8Mhz clock }

SysTick
= 5;

{5msec}

Disp14sPort
= PortB, 0;

{Port, start Portbit}

Disp14Mode
= ShiftRight, Blank;

Disp14Digits
= 6, iData;
Disp14sPort

Defines the Port to use. The parameter StartBit defines which bit in the port is the first to use, but the order of the bits is fixed.

Disp14sDigits

Defines the digit count of the driver 1..8 and the memory area of its buffer.

Disp14Mode

Defines the action of the displays with adding a new char with DispOut. Wrap places the internal insert cursor when reaching the end of the line to position 0 (left). With ShiftLeft the cursor stays at right and the character is inserted here. The rest of the contents are shifted one position to the left. With ShiftRight this behaviour is exactly the opposite.

With Blank a blanking signal is generated which suppresses ghosting while a digit is switched.

NoBlank disables this features and the port pin is not used.

3.8.1 Variables
All write operations are translated from ASCII into the segment presentation and then copied into the local buffer. The content of this buffer then is transferred to the display drivers through the external shift registers. The application can also directly write into the display buffer. In this way segments can be manipulated or special characters can be written and displayed.

The buffer is defined as Array[0..Disp14Digits -1] of word.

var Disp14Buff : array[0.. Disp14Digits-1] of word;

3.8.2 Functions
I2C_Disp7Pos

The writing cursor is positioned at a particular location. The passing parameter is of the type byte and indicates the position or the digit (cell). The counting order of the digits is from ‘0’ (left) up to

Disp14digits-1 (most right);

Procedure Disp14Pos (const digit : byte);

Disp14Pos (2);

(* position 2 *)

Disp14Out

Write into the display buffer. Passing parameter is of the type char. The symbol, which is at the actual location within the display is overwritten with the new one.

Because a 14seg-display is not able to represent all ASCII symbols, some symbols are represented as spaces. Control symbols are ignored, except ‘CR’ and ‘LF’ and #0..#9.

Linefeed (LF = $0A) deletes the display and sets the writing cursor to the position ‘0’. Return (CR = $0D) sets the writing cursor to the position ‘0’, but does not change the display.

With wrap mode if the writing cursor has reached the last position, it is automatically set to ‘0’.

With shift mode if the writing cursor has reached the last position, the content is shifted one position left or right and the new character is appended.
Procedure Disp14Out (const ch : char);

 Disp14Out ('A');

{show char A}

 Write (Disp14Out, IntToStr (i));
{string output}

Disp14Clear

The whole display is deleted. The writing cursor is positioned to the location ‘0’. All actual blinking

functions are reset.
Procedure Disp14Clear;

 Disp14Clear;

Disp14CLREOL

The display is deleted from the actual position of the cursor up to the end of line. The position of the

writing cursor is preserved.
Procedure Disp14CLREOL;

 Disp14CLREOL;

Disp14Blink

The whole display blinks or blinking is switched OFF. The passing parameter is of type

boolean.
Procedure Disp14Blink (const blink : boolean);

 Disp14Blink (true);

Disp14DigBlink

A single digit blinks or blinking is disabled. The passed parameter is of type byte and defines the position or

the digit. With “blink“ the blinking is switched ON or OFF.

Procedure Disp14DigBlink (digit: byte; blink: boolean);

 Disp14DigBlink (1, true);

Disp14Test

Test function. All segments of the display are switched ON. The writing cursor is positioned to

location ‘0’. All actual blinking functions are reset.
Procedure Disp14Test;

 Disp14Test;

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\Disp14s

[image: image11.png]6 S[HO AN Ao SNid Wdup
ajdwexa puedxsQ] 09Y¥AY

w o
by - L

b — 1 Ee 1 B

E § B 8]

fo = T 3z = I

oy e " [— . | & =
o = P e i

e ks - -]

by . B -

ipasn 20 0 591 LoHpL 1 0 250

S0z e o Beon ey o S L.

schematic Disp14seg
3.9 LED 7seg Display Driver for up to 4 displays

Overview

Although LCD type of displays are the standard because they are cheap, flexible and easy to use,

7 segment LED displays are still used. In spite of their limited information possibilities they are used when character size (up to 20cm/4inch height) or high brightness or very good readability at long distances is required. This is still the domain of LED displays and they have a ”bright” future.

7 segment LED displays are connected to a CPU either through shift registers or with special display driver chips. The disadvantage of both versions on one hand is big code and CPU-time wasting. On the other hand the pin usage of the CPU increases with each additional display.

The solution is to implement the 7seg-displays on a bus system, usually the I2C. But ready to use 7seg-displays with a bus interface are not available.

So standard I2C LED driver chips must be used, which can directly supply 16 LEDs or 2 digits. Here only

2 port lines of the CPU are used, independent of the count of the connected displays or digits.

Current chips of this type contain a blinker and a dimmer so the CPU only needs to send commands. The blinking, dimming and multiplexing via continuous software loops, for example in the SysTick, is not necessary and the CPU is not burdened with this job.

Introduction I2C_Disp7

This implementation either uses the software I2C-driver (I2Cport) or the internal TWI (I2C) port of the AVR mega CPUs. To use the LCDmultiPort either the driver I2Cport or the driver TWImaster or the driver TWInet must be imported, the latter in Master mode. The standard 7SegPort driver can coexist with the I2C_Disp7 driver.

As the I2C port-expander one PCA9532 from Philips must be used for two digits. This chip can be present up to 8 times on the I2C bus. So the sum of all display digits cannot exceed 16 digits, which can be distributed to up to 4 displays where the digit count of a display cannot exceed 8.

The driver works in non-multiplex mode. Although this results in a larger part count, the EMI problems are minor. This is a big problem with multiplexed LED displays where the radiation can flow through the glass or plastic front without any attenuation.

The wiring between the PCA9532 and the 7seg displays is fixed by the driver and can be found in schematic below. The PCA9532 can run up to 400kBit/sec on the I2C Bus.

The driver functions are similar to the functions of the driver Disp7sPort but with the extension that each function has a display number parameter (exception: I2C_Disp7Out).

3.9.1 Technical Data

I2C Port
Software I2C imported through I2Cport

or
CPU-TWI imported by the TWImaster

or
CPU-TWI imported by the TWInet in Mastermode

Displays
up to 4, max. 8 digits/display, a total 16 digits max

Hardware
I2C LED-driver chip PCA9532 from Philips, 1 piece for 2 digits

I2C addresses
The PCA9532 are located on the bus-addresses $60..$67 MSD..LSD

The PCA9532 have 3 address pins and bits which must be connected so that a continuous addressing is possible. Leftmost (MSD) digit has the lower address.

Imports

As usual with the AVRco system the driver must be imported and defined. In addition the desired I2C/TWI driver must be imported and defined.

The SysTick is not used. Example:

Import I2Cport, I2C_Disp7;

or

Import TWImaster, I2C_Disp7;

or

Import TWInet, I2C_Disp7;

// use Master mode

Defines

Whether the I2C or TWIport is used must be defined. As with the standard 7seg-Port, the used display size and count must be defined.

Example for I2Cport:

Define
ProcClock
= 8000000;

{8Mhz clock }

I2Cport
= PortC;

{port used}

I2Cdat
= 7;

{bit7-PortC}

 I2Cclk
= 6, 4;

{bit6-PortC, optional delay 4}

 I2C_Disp7
= I2C_Soft, iData;
{use Software I2Cport, buffer loc}

// use 2 Displays

 I2C_7sDig1
= 8;

{first display 8digits}

 I2C_7sDig2
= 6;

{second display 8digits}

 I2C_7MODE
= wrap;

Example for TWImaster:

Define
ProcClock
= 8000000;

{8Mhz clock }

 TWIpresc
= TWI_BR100;

{100kBit/sec alt. TWI_BR400}

 I2C_Disp7
= I2C_TWI, xData;
{use TWIport, buffer location}

// use 4 Displays

 I2C_7sDig1
= 4;

{first display 4digits}

 I2C_7sDig2
= 4;

{second display 4digits}

 I2C_7sDig3
= 4;

{third display 4digits}

 I2C_7sDig4
= 4;

{fourth display 4digits}

 I2C_7MODE
= shiftLeft;

Example for TWInetMaster:

Define
ProcClock
= 8000000;

{8Mhz clock }

 TWInode
= 05;

{default address in slave mode}

TWIpresc
= TWI_BR400;
{400kBit/sec alt. TWI_BR100}

TWIframe
= 4, iData;

{buffer/packet size}

 TWIframeBC
= 6;

{option broadcast buffer/packet size}

 TWInetMode
= Master;

 I2C_Disp7
= I2C_TWI, iData;
{use TWIport, buffer location}

// use 1 Display

 I2C_7sDig1
= 4;

{4digits}

 I2C_7MODE
= wrap;

I2C_Disp7

Requests the I2C-port to use, either software-I2C with I2C_Soft or on-chip TWIport with I2C_TWI. The required basic driver must also be imported and defined.

I2C_7sDIGn

Defines the import of a displays and its digit (cell) count.

I2C_7MODE

Defines the reaction of the displays with adding a new char with DispOut. Wrap places the internal insert cursor when reaching the end of the line to position 0 (left). With ShiftLeft the cursor stays always at right and the character is inserted here, the rest of the contents is shifted one position to the left.

3.9.2 Types
The import of the I2C_Disp7 publishes an enumeration which must be used for the function calls of the driver:

Type TI2C_DISP7 = (Disp7_1, Disp7_2, Disp7_3, Disp7_4);

For testing, on and off switching of the display this enumeration must be used:

Type TI2C_Ctrl7 = (Disp7_On, Disp7_Off, Disp7_Test);

3.9.3 Variables
All write operations are translated from ASCII into the segment presentation and then copied into local buffer. The content of this buffer then is transferred to the display drivers through the I2C bus. The application can also write directly into the display buffer. In this way segments can be manipulated or special characters can be written and displayed.

Each display imported with Define has its own buffer which is defined as an Array[0..I2C_7sDIGn -1].

Var I2C_7Buff1, I2C_7Buff2, I2C_7Buff3, I2C_7Buff4;

3.9.4 Functions
All functions with the exception of I2C_Disp7Out need as the first parameter the number of the desired display. This parameter is then stored internally and will be used by I2C_Disp7Out. Each function starts an internal refresh if necessary.

I2C_Disp7Init

Each connected display (driver chips) must be initialised at least once. The buffer content stays unchanged. The BlinkRate defines the flash rhythms. The accompanying on/off must be defined with the parameter DutyCycle.

Function I2C_Disp7Init (const Disp : TI2C_Disp7; BlinkRate, DutyCycle : byte);

 I2C_Disp7Init (Disp7_1, 50, 127);
// 3Hz rate, 50/50 onoff

I2C_Disp7Ctrl

Each connected display can be switched on, switched off and tested without changing the buffer content. The test function switches on all segments including the decimal point. With the ON-function exits the test mode.

Function I2C_Disp7Ctrl (const Disp : TI2C_Disp7; const ctrl : TI2C_Ctrl7);

 I2C_Disp7Ctrl (Disp7_1, Disp7_Test);

 I2C_Disp7Ctrl (Disp7_2, Disp7_Off);

 I2C_Disp7Ctrl (Disp7_3, Disp7_On);

I2C_Disp7Test

Test function. All segments of the display are switched ON. The writing cursor is positioned to

location ‘0’. All actual blinking functions are reset.
Procedure I2C_Disp7Test (const Disp: TI2C_Disp7);

I2C_Disp7Pos

The writing cursor is positioned to a specific location. The passing parameter is of the type byte and indicates the position, or the digit (cell). The counting order of the digits is from ‘0’ (left) up to

I2C_7sDIGn -1 (most right);

Procedure I2C_Disp7Pos (const Disp : TI2C_Disp7; const digit : byte);

 I2C_Disp7Pos (Disp7_1, 2);

(* position 2 *)

I2C_Disp7Set

Optional, switches the driver to a specific display. Only makes sense with I2C_Disp7Out.

Procedure I2C_Disp7Set (const disp : TI2C_Disp7);

 I2C_Disp7Set (Disp7_1);

I2C_Disp7Get

Optional. The function returns the current selected display.

Function I2C_Disp7Get : TI2C_Disp7;
I2C_Disp7Out

Because this procedure also must interact with Write, there is no display select parameter Disp. The writing to the display is always directed to the currently active display. The desired display can also be explicitly set with I2C_Disp7Set.

Writes into the display buffer. Passing parameter is of the type char. The symbol, which is at the current location in the display is overwritten with the new one. Because a 7seg-display is not able to represent all symbols of the alphabet, some symbols are represented as spaces.

Control symbols are ignored, except ‘CR’ and ‘LF’. Linefeed (LF = $0A) deletes the display and sets the writing cursor to the position ‘0’. Return (CR = $0D) sets the writing cursor to the position ‘0’, but does not change the display. With wrap mode if the writing cursor has reached the last position, it is automatically set to ‘0’. With a Shift mode the display content is shifted one position to the left and the new character is appended.
Procedure I2C_Disp7Out (const ch : char);

 I2C_Disp7Out ('A');
{show char A}

 Write (I2C_Disp7Out, IntToStr (i)); {string output}

I2C_Disp7Clear
The whole display is deleted. The writing cursor is positioned to location ‘0’. All actual blinking

functions are reset.
Procedure I2C_Disp7Clear (const Disp : TI2C_Disp7);

 I2C_Disp7Clear (Disp7_1);

I2C_Disp7CLEOL

The display is blanked from the actual position of the cursor up to the end of line. The position of the

writing cursor is preserved.
Procedure I2C_Disp7CLEOL (const Disp : TI2C_Disp7);

 I2C_Disp7CLEOL (Disp7_1);

I2C_Disp7DigitBlink

A single digit blinks or blinking is disabled. The passed parameter is of type byte and defines the position or the digit (cell). With “blink“ the blinking is switched ON or OFF.

Procedure I2C_Disp7DigitBlink (Disp : TI2C_Disp7; digit: byte; blink: boolean);

 I2C_Disp7DigitBlink (Disp7_1, 1, true);

I2C_Disp7Dim

The displays can be dimmed. The brightness can be set in the range of 0..255. Consider two important points with dimming

1. A blinking display always switches between 0% and 100% brightness. Dim values are ignored with

blinking.

2. The dimming is done with pulse width modulation (PWM). Because of this a higher EMI radiation must

be expected. But this will be much less than with multiplexed displays.

Procedure I2C_Disp7Dim (const Disp : TI2C_Disp7; const dim : byte);

 I2C_Disp7Dim (Disp7_1, 127);
(* brightness to 50% *)

I2C_Disp7Refresh

All functions and procedures start an internal refresh/update from the display buffer to the digit drivers if necessary.

Direct writing to the I2C_7Buffx has no direct influence to the display, because the external driver chips are not updated by a direct buffer manipulation. Hence if a direct writing to a buffer was made this procedure must be called in order to make the changes visible.

Procedure I2C_Disp7Refresh (const Disp : TI2C_Disp7);

I2C_Disp7Refresh (Disp7_1);

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\I2C_Disp7s

[image: image12.png]ZBOEXVI ZBPXVIN

2501-NV 3jou uonediiddy
WD 1eUORRU M 18 Y00
sadiouud carsy

Qe wiowEr =1

T_ane

o0 Tlowa
]

T
D

%

£INVIS

sosuad

L3AVIS aw HILSYH

yosuss ano
OBNeSd 00y

ano wosusd ano
OSIGSY 0adiaX
SoWsS: LodiaxL
ssad

INVERd Lo
oNvzad s0a
iwied soan
owoss ¥

<o z
vioosas

vioosas Loy

a3 (5534 saz
ras oEw TiNead
cas @00 Qnizad

swecs
Quad

ey
vanoy

eaoy
Geaoy

swoas
Qmas

E
&
=9 svasay B svasoy
avay B Savoy
evaray s cvatoy
e e o cvazav e [2 ae x ovatoy
a TS5 ivaiay TL® v i 5= ivaioy
L ovanay ovaoay == ovanay 2= pr=] ovanoy
opgl— 201 £ T = o o1
oGS 90 orasisEss e RN Sowsissts 590

o o o inao

schematic I2C_7seg
3.10 IOexpand Driver for up to 128 digital IOs

Basics

With some control applications and with a specific CPU used the useable IO-pins are not sufficient especially if two ports must be used for external RAM.

So a larger CPU (pin count) must be used or the current port pins must be expanded with additional hardware. There are several ways to implement such an expansion. Real IO-chips like the 8255 often

can’t be used because they need a parallel connection (at least 10bits) to the CPU and there are only

20 additional pins. Standard latches must also be connected in parallel and therefore also need many additional Pins of the CPU so the pin saving is less than expected.

If the IO-speed doesn’t matter too much but the count of additional pins is high, the best way is to implement external shift registers which solve the problem very well.

Each shift register serves either for 8 input or 8 output bits. The connection of them uses typically 3 control pins. Because the shift registers are cascadeable the control pin count is constant regardless of how many registers are serialized. The drawback of this method is that each in/out bit needs one shift register cycle (clock, data).

But with smart programming of the driver it’s possible to save machine cycles and also port pins if the combination of input and output types is used.

Overview IOexpander

This implementation uses 3 bi-directional port bits of the CPU if only one mode is implemented, either input or output. If input and output are combined, 5 bi-directional port pins must be used. All port pins must be in a consecutive order in the same port.

The driver is completely passive, this means that the application must use it by demand (cyclically by a Task, Process, interrupt or simply when necessary). The driver places its results into variables which can be read at any time. Output values which should changed or become updated must be written into the related variables so the driver reads them and stores them into the shift registers.

Each driver call reads the output variables and shifts their content into the output shift registers. At the same time with each single bit shift operation it reads the content of the input shift registers and places the result into the input variables in the memory.

The driver works byte-oriented, this means there must be always 8bit shift registers connected. There are maximal 8 registers possible which results in max. 64 bits. This is true for both, the input and also for the output. The registers can be in any configuration. For example there can be 8 input registers and 1 output register.

3.10.1 Technical Data

Input Register

0..8

Bits
0, 8, 16, 24, 32, 40, 48, 56, 64

Output Register

0..8

Bits
0, 8, 16, 24, 32, 40, 48, 56, 64

Input Databytes

0..8

in iData or xData area

Output Databytes

0..8

in iData or xData area

Used Port Bits

Input only
3

Output only
3

Combined

5

Imports
As usual with the AVRco system the driver must be imported and defined.

SysTick is not necessary.

Import IOexpand;

Defines

It must be specified which port of the CPU and which bits of this port must be used, where the variables reside and also how many input and output bytes (shift registers) must be used.

Define
ProcClock
= 8000000;

{8Mhz clock }

IOexpand
= PortD, 2, iData;
{Port, Port-startbit, memory loc}

IOexpInp
= 4;

(4x8 = 32 bit input}

IOexpOutp
= 4;

(4x8 = 32 bit output}

IOexpand

Defines the port to use, the first useable bit of this port and the data area of the driver. The port must be bi-directional. The startbit in the port must be chosen so that all required control bits for the shift registers

(3 or 5) fit into the port. The data area defines where the working variables of the driver reside.

IOexpInp

Defines the count of input bytes and also memory bytes used.

IOexpOutp

Defines the count of output bytes and also memory bytes used.

3.10.2 Functions and Variables

IOexpInpArr

The import of the driver exports this array if input pins/bytes were defined. The size of this array depends of the count of the input bytes. The driver stores its read results in this array in the following order: first byte into IOexpInpArr[0] the seconds byte into IOexpInpArr[1] etc.

The definition of the array is this:

Var IOexpInpArr : array[0.. IOexpInp-1] of byte;

IOexpInpx
The bytes of the array also have synonyms so its also possible to read the bytes without array indexing. The bytes, where only [IOexpInp] count exist, are defined:

Var
IOexpInp0 : byte;

IOexpInp1 : byte;

IOexpInp2 : byte;

...

IOexpOutpArr

The import of the driver exports this array if output pins/bytes were defined. The size of this array depends of the count of the output bytes. The driver reads the output bytes from this array in the following order: first byte from IOexpOutpArr[0] the seconds byte from IOexpOutpArr[1] etc. and shifts them out into the output shift registers.

The definition of the array is this:

Var IOexpOutpArr : array[0.. IOexpOutp-1] of byte;

IOexpOutpx

The bytes of the array also have synonyms so it’s also possible to write the bytes without array indexing. The bytes, where only [IOexpOutp] count exist, are defined:

Var
IOexpOutp0 : byte;

IOexpOutp1 : byte;

IOexpOutp2 : byte;

...

...

IOexpUpdate

The application calls this procedure which executes the driver. The driver reads all input shift registers and stores them into the input array. In the same process the output array is read out and shifted into the output shift registers.

The definition of IOexpUpdate is:

Procedure IOexpUpdate;
Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\IOexpand

[image: image13.png]Sonewaws Ids

}IoMjaN pJeoguo |dS

¥]

200 | Hane
T Joous
s el
o8
oS
E
€INVIS qe zanvis 13AVIS
wosuea ane yosuss ano yosied o
oSS aawax o2 OReEs ood@ OSivEES 0quiT
S isowsed ladaxL 1SOWSEd 10H1aXL SOWSES 10Xl
ssivad o —
vics fivieas -
onrvzaz onivzas
ch iise el
° oLaz 1
@01 ah
vicosas
ad
Lueas
L zanne
ey = o
Guuad = A
== e =]
3
3
= > ons [w
i3 anob—2 anob—E£3
o = © L
X
B £
a

schematic IOexpander

3.11 RS232/V24 Driver SerPort, SerPort2 and SerPort3, -4

The bigger AVR types have one or more serial interfaces. In the older types (AT90Sxxxx) is a UART implemented; the newer contain so-called USARTs.

The USARTs are much more flexible than the former UART.

The AVRco system supports, dependent of the CPU type up to 4 SerPorts:

SerPort (SerPort1), SerPort2, SerPort3, SerPort4.

The XMegas provide upto 8 interfaces: SerPortC0, SerPortC1, SerPortD0, SerPortD1 etc.

If an AVR CPU has USARTs instead of UARTs the AVRco system offers some additional system functions that support the enhanced functionality of these USARTs. These are changing of the data byte length, parity mode and stopbit count. These functions are available at runtime.

Furthermore the internal default values (2 Stopbits, noParity, 8 Databits) can be overwritten at design time with defines. So the system starts up with the desired setup and a runtime setup is not necessary in most cases.

3.11.1 Basic Functions (UART and USART)

Imports

As usual with the AVRco system, the driver must be imported.

Import SysTick, SerPort, SerPort2, ..; // SerPort = SerPort1
Defines

The baud rate, optional Rx and/or TxBuffer, optional Databits, Stopbits or Parity

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

SerPort
= 9600, Stop1;
{9600 Baud, 1Stopbit}

// SerPort
= 9600, parEven;
{9600 Baud, even parity}

// SerPort
= 9600, parOdd;
{9600 Baud, odd parity}

// SerPort1
= 9600, parOdd;
{9600 Baud, odd parity}

//SerPorC0
= 9600, SyncMaster;
{9600 Baud, synchron mode, XCK output}

//SerPorC0
= 9600, SyncSlave;
{9600 Baud, synchron mode, XCK input}

TxBuffer
= 8;

{8 Byte Buffer and Int}

// TxBuffer1
= 8;

{8 Byte Buffer and Int}

RxBuffer
= 8, iData;
{8 Byte Buffer and Int}

// RxBuffer1
= 8, iData;
{8 Byte Buffer and Int}

There are analogous definitions for the other serial interfaces:

Define
SerPort2
= 9600, Stop1;
{9600 Baud, 1Stopbit}

// SerPort2
= 9600, parEven;
{9600 Baud, even parity}

// SerPort2
= 9600, parOdd;
{9600 Baud, odd parity}

TxBuffer2
= 8;

{8 Byte Buffer and Int}

RxBuffer2
= 8, iData;
{8 Byte Buffer and Int}

Define
SerPort3
= 9600, Stop1;
{9600 Baud, 1Stopbit}

// SerPort3
= 9600, DataBit5
{ DataBit5, DataBit6, DataBit7, DataBit9}

TxBuffer3 ...

etc.

XMega

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

SerPortC0
= 9600, Stop1;
{9600 Baud, 1Stopbit}

//SerPortC0
= 9600, parEven;
{9600 Baud, gerade Parität}

//SerPorC0
= 9600, parOdd;
{9600 Baud, ungerade Parität}

TxBufferC0
= 8;

{8 Byte Buffer und Int}

RxBufferC0
= 8, iData;
{8 Byte Buffer und Int}

There are analogous definitions for the other serial interfaces:

Define
SerPortC1
= 9600, Stop1;
{9600 Baud, 1Stopbit}

//SerPortC1
= 9600, parEven;
{9600 Baud, gerade Parität}

//SerPortC1
= 9600, parOdd;
{9600 Baud, ungerade Parität}

TxBufferC1
= 8;

{8 Byte Buffer und Int}

RxBufferC1
= 8, iData;
{8 Byte Buffer und Int}

Define
SerPortD0
= 9600, Stop1;
{9600 Baud, 1Stopbit}

//SerPortD0
= 9600, DataBit5
{ DataBit5, DataBit6, DataBit7, DataBit9}

TxBufferD0 ...

etc.

By the import of the XMega SerPorts this type (Enumeration) is defined by the system:
Type

 tUSARTenum = (UsartC0, UsartC1, UsartD0, UsartD1, UsartE0, UsartE1, UsartF0, UsartF1, UsartCDC);

Notes:

Because with standard UARTs the system uses the 9th bit either as the 2nd Stopbit or as the Paritybit it is only possible to use 2 Stopbits or Parity. Both together is not possible! But there can be exceptions by newer AVRs which support all by hardware.
Please note that if any parity function is enabled the parity must be calculated for each byte by the system
if the UART doesn’t support it.

Parameter changes at runtime are possible.

RXBUFFER (RXBUFFER1), RAMpage

Definition of the RX-Buffer length (Ringbuffer).

RXBUFFER is used by functions: If defined the required buffer memory locations are allocated (4..254), and the receiver works with buffers. Otherwise it works with polling. Take care with definition of the buffer length by RxBuffer. The most processors only have a small Ram memory!

The buffer (if defined) works as a ringbuffer without watching. That means that symbols may get lost, if they are not fetched by SerInp in time. That might lead to a program crash. So programming carefully with buffer execution, too!

TXBUFFER (TXBUFFER1), RAMpage

Definition of the TX-Buffer length. See also above (RxBuffer). It is also valid for TxBuffer, but the exception is that the Txbuffer cannot overflow.

3.11.1.1 Functions and Procedures

SerStat (SerStat1, SerStat 2, SerStat 3, SerStat 4)

XMega

SerStatC0, SerStatC1, SerStatD0, SerStatD1, SerStatE0, SerStatE1, SerStatF0, SerStatF1

Gives the state of the serial interface. It should be called before SerInp is called, to avoid unnecessary waiting periods within the procedure.

SerStat returns TRUE, if a character exists. With processes and tasks you should avoid SerStat, but use WaitPipe(RxBuffer) instead.

Furthermore the function "PipeFull" can be used with the serial interfaces:

Function PipeFull (RxBuffer): boolean;

SerStatP (SertStatP1, SerStatP2, SerStatP3, SerStatP4)

XMega

SerStatPC0, SerStatPC1, SerStatPD0, SerStatPD1, SerStatPE0, SerStatPE1, SerStatPF0, SerStatPF1

With

Define SerPort = 9600, parEven;

XMega

Define SerPortC0 = 9600, parEven;

an even parity is selected.

With

Define SerPort = 9600, parOdd;
XMega

Define SerPortC1 = 9600, parOdd;
an odd parity is selected.

If a parity error is detected while receiving, the received byte stays valid and can be read. After reading with the function

SerStatP : boolean;

XMega

SerStatPC0 : boolean;

the result of the parity check can be found. If there was a parity error, the result is true (= Error) otherwise it is false. If the receiver works with RxBuffer it's only possible to get the info that there was an error or not since the last call of "SerStatP". Which byte in the RxBuffer this relates to cannot be found.

The call of "SerStatP" always resets the systems internal parity error flag to false (no error).

SerBaud (SerBaud1, SerBaud2, SerBaud3, SerBaud4)

XMega

SetSerBaud

Adjusts the BaudRate of the serial interface at runtime.
SerBaud(19200);

XMega

SetSerBaud(UsartC0, 19200);

SerInp (SerInp1, SerInp2, SerInp3, SerInp4)

XMega

SerInpC0, SerInpC1, SerInpD0, SerInpD1, SerInpE0, SerInpE1, SerInpF0, SerInpF1

Reads the serial interface or buffer.

With polling (RxBuffer = 0) SerInp does not read the buffer but the input register of the UART's. In both cases the procedure waits until a character to fetch is ready. To avoid needless waiting periods or a blockading of the program it normally makes sense to fetch the state of the interface by SerStat first and then the received character.

repeat until SerStat;

{wait for RxReady}

c:= SerInp;

XMega

repeat until SerStatC0;

{wait for RxReady}

c:= SerInpC0;

If processes are imported it is better to do the interface within a process, so the process waits for a character with WaitPipe (RxBuffer) and does not waste any run-time. The Receiver buffer can be cleared by FlushBuffer(RxBuffer).

XMega

WaitPipe (RxBufferC0) FlushBuffer(RxBufferC0)
SerOut (SerOut1, SerOut2, SerOut3, SerOut4)

XMega

SerOutC0, SerOutC1, SerOutD0, SerOutD1, SerOutE0, SerOutE1, SerOutF0, SerOutF1

With polling (TxBuffer = 0) SerOut does not write into the buffer, but directly into the sending-register of the UART. In both cases the procedure waits until the previous character was sent and the sending-register is free, or until the sending-buffer is able to accept a new character. Example:

SerOut ('x');

Write (SerOut, ByteToStr (100:6));
{-> ' 100'}

XMega

SerOutC0 ('x');

Write (SerOutC0, ByteToStr (100:6));
{-> ' 100'}

SerInpBlock (SerInpBlock1, SerInpBlock2, SerInpBlock3, SerInpBlock4)

SerInpBlock_P (SerInpBlock1_P, SerInpBlock2_P, SerInpBlock3_P, SerInpBlock4_P)

Procedure SerInpBlock (var location: type);

Procedure SerInpBlock_P(ptr : pointer; len : word);

XMega

SerInpBlock

SerInpBlock_P

Procedure SerInpBlock (Usart : tUSARTenum; var location: type);

Procedure SerInpBlock_P(Usart : tUSARTenum; ptr : pointer; len : word);

With these functions it is possible to receive any data structure. Possible memory areas are:

Procedure- or function-local vars, RAM, EEprom and Flash. With SerInpBlock_P, SerInpBlock2_P etc.

the destination must be a RAM location.The type of the target (location) in RAM is only used for calculation of the block size. The underlying structure is ignored.
SerOutBlock (SerOutBlock1, SerOutBlock2, SerOutBlock3, SerOutBlock4)

SerOutBlock_P (SerOutBlock1_P, SerOutBlock2_P, SerOutBlock3_P, SerOutBlock4_P)

Procedure SerOutBlock(const location: type);

Procedure SerOutBlock_P(p : pointer; count : word);

XMega

Procedure SerOutBlock(Usart : tUSARTenum; const location: type);

Procedure SerOutBlock_P(Usart : tUSARTenum; p : pointer; count : word);

With these procedures it's possible to send any data structure. Possible memory areas are:

Procedure- or function-local vars, RAM, EEprom and Flash

3.11.1.2 Interrupt Operation

With most applications serial interfaces are interrupt driven. This has the advantage that sending and receiving of characters are done by the system in the background. SerPort interrupts always need a circular buffer where the characters are written to and read from. By the Define of an Rx- or TxBuffer the necessary interrupt system is automatically imported.

Define
RxBuffer
= 24,
iData;

TxBuffer
= 16,
iData;

RxBuffer2
= 40,
xData;

TxBuffer2
= 8,
xData1;

RxBuffer3
= 40,
xData;

TxBuffer3
= 8,
xData1;

RxBuffer4
= 40,
xData;

TxBuffer4
= 8,
xData1;

XMega

Define
RxBufferC0
= 24,
iData;

TxBufferC0
= 16,
iData;

RxBufferF0
= 40,
xData;

TxBufferF1
= 8,
xData1;

SerInp Timeout

An alternative for receiving of serial data with "if SerStat then SerInp" is using SerInp with an additional timeout parameter. Some jobs can be solved in a better way with timeouts. The TimeOut mode for data receive must be declared:

Define
SysTick
= 10;

// necessary for timeout handling

SerPort
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPort2
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPort3
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPort4
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

XMega

Define
SysTick
= 10;

// necessary for timeout handling

SerPortC0 = 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPortD1
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPortE1
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPortF0
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

Then these system functions are imported:

Function SerInp_TO (var rx : char|byte; const timeout : byte) : boolean;

Function SerInp_TO1 (var rx : char|byte; const timeout : byte) : boolean;

Function SerInp_TO2 (var rx : char|byte; const timeout : byte) : boolean; // 2.chan

Function SerInp_TO3 (var rx : char|byte; const timeout : byte) : boolean; // 3.chan

Function SerInp_TO4 (var rx : char|byte; const timeout : byte) : boolean; // 4.chan

XMega

Function SerInp_TOC0(var rx : char|byte; const timeout : byte) : boolean; // SerPortC0

Function SerInp_TOD1(var rx : char|byte; const timeout : byte) : boolean; // SerPortD1

Function SerInp_TOE1(var rx : char|byte; const timeout : byte) : boolean; // SerPortE1

Function SerInp_TOF0(var rx : char|byte; const timeout : byte) : boolean; // SerPortF0

The parameter "rx" must be a variable of type byte or char, but EEprom is not possible. TimeOut is a byte. After the function returns the variable "rx" contains the character/byte received if the result was true. If the result was false the variable "rx" is unchanged because no data has been received.

The parameter "TimeOut" counts in SysTicks. If a zero value is passed to the function the function returns immediately with or without data (true/false). If parameter > 0 then the function waits until the timeout has elapsed or a character has been received.

SerInp_TO is not useable with the Read and ReadLn functions!

SerInpBlock Timeout

The procedures "SerInpBlock" have timeout controlled variants. Here the same is true as in the "SerInp TimeOut" paragraph above. The function returns with a true if "location" is completely filled with received data. If a TimeOut occurs the function result becomes false and the passed variable is not filled or incompletely filled with data. The value of TimeOut is used for each received byte. TimeOut must be imported:

Define
SysTick
= 10;
// necessary for timeout handling

SerPort
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

// SerPort1
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

SerPort2
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

SerPort3
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

SerPort4
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

XMega

Define
SysTick
= 10;

// necessary for timeout handling

SerPortC0 = 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPortD1
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPortE1
= 9600, Stop2, timeout;

// Stop2 and timeout are optional

SerPortF0
= 9600, Stop2, timeout;
// Stop2 and timeout are optional

Then these system functions are imported:

Function SerInpBlock_TO (var location : type; const TimeOut : byte) : boolean;

Function SerInpBlock_TO1 (var location : type; const TimeOut : byte) : boolean;

Function SerInpBlock_TO2 (var location : type; const TimeOut : byte) : boolean;

Function SerInpBlock_TO3 (var location : type; const TimeOut : byte) : boolean;

Function SerInpBlock_TO4 (var location : type; const TimeOut : byte) : boolean;

XMega

Function SerInpBlock_TO(Usart : tUSARTenum; var location : type; const TimeOut : byte) : boolean;

Function SerInpBlockP_TO (ptr : pointer; len : word; const TimeOut : byte) : boolean;

Function SerInpBlockP_TO1 (ptr : pointer; len : word; const TimeOut : byte) : boolean;

Function SerInpBlockP_TO2 (ptr : pointer; len : word; const TimeOut : byte) : boolean;

Function SerInpBlockP_TO3 (ptr : pointer; len : word; const TimeOut : byte) : boolean;

Function SerInpBlockP_TO4 (ptr : pointer; len : word; const TimeOut : byte) : boolean;

XMega

Function SerInpBlockP_TO(Usart : tUSARTenum; ptr : pointer; len : word; const TimeOut : byte) : boolean;

The target of this operation must be RAM. Writing to EEprom is not possible. The type of the target (location) in RAM is only used for calculation of the block size. The underlying structure is ignored.
3.11.1.3 Handshake Operation

Handshake Tx (DTR)

Sometimes an external unit controls the data flow of "SerOut" of the serial interface of the AVR. This is no problem, as long as the SerPort runs with no TxBuffer and so the SerOut is always done in polling mode. But with a TxBuffer it becomes a problem because the application can recognize DTR-line and now can disable the CPU's Tx-interrupt of the UART, but this can be too late and the external unit is overrun. In addition the application must always poll the DTR line which practically impossible.

To support the DTR handshake with Tx-buffer operation the SerPort driver is extended. If the external device deactivates its DTR line the Tx-Buffer driver immediately stops the transmit operation.

This line is watched in the SysTick and if the stop condition is removed the transmission continues automatically. If no SysTick is implemented then it's the job of the application to re-enable the transmission when the DTR line is activated again. This can be done automatically if the DTR pin of the CPU is an edge triggered interrupt pin. Then a DTR enable generates an interrupt which then re-enables the transmit operation with "SerPort_Send". With most cases it is sufficient when the main program loop recognizes the change from disable to enable of the DTR line and then restarts the transmission. The DTR-option of the serial interface must be defined by:

Define
SerPortDTR
= PinC, 2, Positive;
// first serport

SerPortDTR1
= PinC, 2, Positive;
// first serport

SerPortDTR2
= PinC, 3, Negative;
// second serport if available

SerPortDTR3
= PinC, 4, Positive;
// third serport if available

SerPortDTR4
= PinC, 5, Negative;
// fourth serport if available

XMega

Define
SerPortDTRC0
= PinC, 2, Positive;
// first serport

SerPortDTRC1
= PinC, 3, Negative;
// second serport if available

SerPortDTRD0
= PinC, 4, Positive;
// third serport if available

SerPortDTRD1
= PinC, 5, Negative;
// fourth serport if available

This define also imports the DTR handshake and defines the port pin used. The level statement means "enable at level".

To handle the restart (tx-enable) by the application these procedures are implemented:

Procedure SerPort_Send; or Procedure SerPort_Send1;
Procedure SerPort_Send2;

Procedure SerPort_Send3;

Procedure SerPort_Send4;

 XMega

Procedure SerPort_Send (Usart : tUSARTenum);
Handshake Rx (DSR)
In the other direction, on receiving data, it is also possible to overrun the RxBuffer. With a pure text transfer the XON/XOFF protocol can be used. But this is not possible with binary data. So also here a hardware handshake must be used. The receiver signals the transmitter whether its buffer is full or that it can receive more data. The stop occurs when the buffer is ¾ full, the ready occurs when the receiver buffer is nearly empty, below ¼ buffer size.

To support the DSR handshake with Rx-buffer operation the SerPort driver is extended. If the driver deactivates its DSR line the external transmitter immediately stops its transmit operation until the driver’s buffer drops below the lower threshold and it re-enables transmission by setting the DSR line active again.

The DSR-option of the serial interface must be defined by:

Define
SerPortDSR
= PortC, 2, Positive; // first serport

SerPortDSR1
= PortC, 2, Positive; // first serport

SerPortDSR2
= PortC, 3, Negative; // second serport if available

SerPortDSR3
= PortC, 4, Positive; // third serport if available

SerPortDSR4
= PortC, 5, Negative; // fourth serport if available

 XMega

Define
SerPortDSRC0
= PortC, 2, Positive; // first serport

SerPortDSRC1
= PortC, 3, Negative; // second serport if available

SerPortDSRD0
= PortC, 4, Positive; // third serport if available

SerPortDSRD1
= PortC, 5, Negative; // fourth serport if available

This define imports the DSR handshake and also defines the used port pin. The level statement means "enable at level".

There are no support functions for the DSR line driver option.

Handshake Rx (XON/XOFF)

As an alternate way to avoid RxBuffer overruns it is also possible to use a software handshake instead of a control line. With a pure text transfer the XON/XOFF protocol can be used, although this is not possible with binary data. The receiver signals the transmitter that its buffer is full by sending a XOFF character (#19) and re-enables receiving by sending an XON character (#17). The stop (XOFF) occurs when the buffer is ¾ full, the ready (XON) occurs when the receiver buffer is nearly empty, below ¼ buffer size.

To support the XON/XOFF handshake with Rx-buffer operation the SerPort driver is extended now. If the driver sends a XOFF the external transmitter immediately stops its transmission until the drivers buffer drops below the lower threshold and it re-enables reception by sending the XON.

The XON/XOFF-option of the serial interface (Rx) must be defined by:

Define
RxBuffer
= 20, iData, XON; // fist serport

RxBuffer1
= 20, iData, XON; // fist serport

RxBuffer2
= 30, iData, XON; // second serport if available

RxBuffer3
= 20, iData, XON; // third serport

RxBuffer4
= 30, iData, XON; // fourth serport if available

 XMega

Define
RxBufferC0
= 20, iData, XON; // fist serport

RxBufferC1
= 30, iData, XON; // second serport if available

RxBufferD0
= 20, iData, XON; // third serport

RxBufferD1
= 30, iData, XON; // fourth serport if available

This define imports the XON/XOFF handshake.

There are no support functions for the XON/XOFF option.

If XON/XOFF or DSR handshake is imported then the application can get informed about the stopped or free condition of the SerPort receive state. For this two Callback functions are implemented:
Procedure onSerRxStopped;

The system calls this function every time if the SerPort driver disables the RxBuffer by sending a XOFF or activating the DSR handshake line.

Procedure onSerRxResumed;

The system calls this function every time if the SerPort driver re-enables the RxBuffer by sending a XON or de-activating the DSR handshake line.

Implemented functions of the possible 4 SerPorts:

Procedure onSerRxStopped;
//SerPort

Procedure onSerRxResumed;
//SerPort

Procedure onSerRxStopped2;
//SerPort2

Procedure onSerRxResumed2;
//SerPort2

Procedure onSerRxStopped3;
//SerPort3

Procedure onSerRxResumed3;
//SerPort3

Procedure onSerRxStopped4;
//SerPort4

Procedure onSerRxResumed4;
//SerPort4

XMega

Procedure onSerRxStoppedC0;
//SerPortC0
Procedure onSerRxResumedC0;
//SerPortC0
Procedure onSerRxStoppedC1;
//SerPortC1
Procedure onSerRxResumedC1;
//SerPortC1

Procedure onSerRxStoppedD0;
//SerPortD0

Procedure onSerRxResumedD0;
//SerPortD0
Procedure onSerRxStoppedD1;
//SerPortD1
Procedure onSerRxResumedD1;
//SerPortD1

Procedure onSerRxStoppedE0;
//SerPortE0

Procedure onSerRxResumedE0;
//SerPortE0

Procedure onSerRxStoppedE1;
//SerPortE1

Procedure onSerRxResumedE1;
//SerPortE1

Procedure onSerRxStoppedF0;
//SerPortF0

Procedure onSerRxResumedF0;
//SerPortF0

Procedure onSerRxStoppedF1;
//SerPortF1

Procedure onSerRxResumedF1;
//SerPortF1

Attention as with all CallBack functions also these ones are called from an interrupt service and so the same rules as with interrupt must be obeyed: no big operations like Float, avoid long global interrupt disablings. Don’t forget register savings if necessary!

3.11.1.4 RS485

If the UART is being used with RS485 drivers in half-duplex mode in most cases it is necessary to control the line driver (Tristate or direction) In this case the state of the line driver must not be changed while the UART is shifting out its bits. Furthermore the state should only be altered if the TxBuffer of the system is empty. For these reasons a Define and a Procedure is implemented:

Define
TxBuffer
= 8, iData;

SerCtrl
= PortD, 2, positive; {control line for RS485 driver}

//SerCtrl1
= PortD, 2, positive; {control line for RS485 driver}

//SerCtrl2
= PortD, 2, positive; {control line for RS485 driver}

//SerCtrl3
= PortD, 2, positive; {control line for RS485 driver}

//SerCtrl4
= PortD, 2, positive; {control line for RS485 driver}

XMega

Define
TxBuffer
 = 8, iData;

SerCtrlC0 = PortD, 2, positive; {control line for RS485 driver}

//SerCtrlC1
 = PortD, 2, positive; {control line for RS485 driver}

//SerCtrlD0 = PortD, 2, positive; {control line for RS485 driver}

//SerCtrlD1 = PortD, 2, positive; {control line for RS485 driver}

Because a RS485 support from the system only makes sense with a transmit buffer the TxBuffer must be defined. The Define "SerCtrl" determines the I/O-port, the control pin and the polarity of this pin for enable.

Procedure Ser_Enable (const ena : boolean);

Procedure Ser_Enable1 (const ena : boolean);

Procedure Ser_Enable2 (const ena : boolean);

Procedure Ser_Enable3 (const ena : boolean);

Procedure Ser_Enable4 (const ena : boolean);

XMega

Procedure SetSerEnable(Usart : tUSARTenum; const ena : boolean);

This procedure must be used to control the line driver. With ena = true the driver is immediately enabled. From this point on SerOut or Write can be used. With ena = false the system is informed that the line driver can be disabled if the last byte of the TxBuffer is stored into the UART's Tx-register and the last bit of this byte has left the UART's shift register. The state of the line driver can be found with reading back the corresponding port pin.

SER_ENABLE (true);

write (SerOut, 'hello');

SER_ENABLE (false);

XMega

SetSerEnable(UsartC0, true);

write (SerOutC0, 'hello');

SetSerEnable(UsartC0, false);

3.11.1.5
TxComplete Callback

If only the info is needed that the TxBuffer is completely empty and also the UART has send out all bits then the SerPort driver can inform the application about this. Therefore the Define/Import similar to (alternative) the \ RS485 mode must be used. The SerCtrl, the TxBuffer Define and the function Ser_Enable is necessary. The info is made by the Call Back function. RS485 drivers are not supported in this case!

Define
TxBuffer
= 16, iData;

SerCtrl
= onSerTxComplete1; {necessary callback function}

//SerCtrl2
= onSerTxComplete2; {necessary callback function}

//SerCtrl3
= onSerTxComplete3; {necessary callback function}

//SerCtrl4
= onSerTxComplete4; {necessary callback function}

XMega

Define
TxBuffer
 = 32, iData;

SerCtrlC0 = onSerTxComplete_C0; {necessary callback function}

//SerCtrlC1
 = onSerTxComplete_C1; {necessary callback function}

//SerCtrlD0 = onSerTxComplete_D0; {necessary callback function}

//SerCtrlD1 = onSerTxComplete_C0; {necessary callback function}

The concerning Callback function must be provided by the application:

Procedure onSerTxCompleteXX;

Support functions:

Procedure Ser_Enable (const ena : boolean);

Procedure Ser_Enable1 (const ena : boolean);

Procedure Ser_Enable2 (const ena : boolean);

Procedure Ser_Enable3 (const ena : boolean);

Procedure Ser_Enable4 (const ena : boolean);

XMega

Procedure SetSerEnable(Usart : tUSARTenum; const ena : boolean);

This is used to control the Callback. With ena = true the operation is started. From this point on SerOut or Write can be used. With ena = false the system is informed that if the last byte is fetched from the TxBuffer and all bits are sent by the UART, the Callback function must be called..

Ser_Enable (true);

write (SerOut, 'hello');

Ser_Enable (false);

XMega

SetSerEnable(UsartC0, true);

write (SerOutC0, 'hello');

SetSerEnable(UsartC0, false);

If in addition an RS485 driver must be controlled so the application must enable it at SerEnable time and disable it in the Callback function.

Attention as with all CallBack functions also these ones are called from an interrupt service and so the same rules as with interrupt must be obeyed: no big operations like Float, avoid long global interrupt disablings. Don’t forget register savings if necessary!

3.11.2 Port Switching

With AVRs containing several UARTs it's possible to dynamically switch between the multiple SerPorts. If correctly imported there is a new byte "SerPortSelect". It controls the selection of the interface of the functions SerOut, SerInp, SerStat and FlushBuffer.

For example if SerPortSelect has the value 1 all SerOut calls are redirected to SerPort2, and so are SerInp to SerInp2 and SerStat to SerStat2.
This routing is also valid for the functions Write, WriteLn and Read etc.

Basically this is true: if SerOut, SerInp, SerStat etc. is used here the SerPortSelect routes the selected port. But if a real port is selected with SerInp2 for example the SerPort2 is explicitely used.

In order to enable this switching both SerPorts must be imported. Then in addition the import of "SerPortSelect" is also possible.

Device = mega2560, VCC = 5;

Import SysTick, SerPort, SerPort2, SerPort3;

From SerPort import SerPortSelect;

Now the byte "SerPortSelect" is accessible.

SerPortSelect:= 1;
// switch to serport2

SerOut ('x');

// write 'x' to serport2

if SerStat then
// check serport2

 ch:= SerInp;

// read from Serport2

endif;

SerPortSelect:= 2;
// switch to serport3

SerOut ('x');

// write 'x' to serport3

if SerStat then
// check serport3

 ch:= SerInp;

// read from Serport3

endif;

SerPortSelect:= 0;
// switch to serport

SerOut ('x');

// write 'x' to serport

if SerStat then
// check serport

 ch:= SerInp;

// read from Serport

endif;

SerPortSelect:= 0;
// switch to serport

FlushBuffer (RxBuffer);// clear the selected RxBuffer

XMega

Here the variable SerPortSelect is not a byte but of type tUSARTenum
SerPortSelect:= UsartC1;
// switch to serportC1

SerOut ('x');

// write 'x' to serportC1

if SerStat then

// check serportC1

 ch:= SerInp;

// read from SerportC1

endif;

SerPortSelect:= UsartD0;
// switch to serportD0

SerOut ('x');

// write 'x' to serportD0

if SerStat then

// check serportD0

 ch:= SerInp;

// read from SerportD0

endif;

SerPortSelect:= UsartC0;
// switch to serportC0

SerOut ('x');

// write 'x' to serportC0

if SerStat then

// check serportC0

 ch:= SerInp;

// read from SerportC0

endif;

For example if SerPortSelect has the value UsartC1 all SerOut calls are redirected to SerPortC1, and so are SerInp to SerInpC1 and SerStat to SerStatC1.

This redirection is also valid for drivers and functions using the SerPorts like Write, WriteLn, Read etc.

Basically this is true: if SerOut, SerInp, SerStat etc. is used here the SerPortSelect routes the selected port. But if a real port is selected with SerInpC1 for example the SerPortC1 is explicitely used.
3.11.3 UART enable and disable for XMegas
With some cases it maybe necessary to disable and re-enable the Rx part, the Tx part or both of an UART. The system provides these functions to accomplish this:

 procedure UartEnableRxXX(Ena : boolean); // Rx hardware enable/disable

 procedure UartEnableTxXX(Ena : boolean); // Tx hardware enable/disable

where XX stays for C0, C1, D0, D1 etc.
3.11.4 IRDA for XMegas UARTs (IRcom)
The XMega UARTs provide an IRDA support. IRDA = InfraRedDataAssociation. With IRDA data can be exchanged via infrared light. There a several low-Level protocols and also some protocol stacks/layers based on IRDA. Our implementation uses the simplest and lowest level of IRDA.

This SIR protocol (SerialInfraRed) is an asynchron protocol which is also used by all UARTs. But the pulse widths are reduced here to 1/6 to save power consumption.

Basically the SIR works with 115.2kBaud, 1 Startbit, 8 Databits, 1 Stopbit and no parity.

All these requirements are fullfilled by the IRDA hardware in the XMega UARTs. But this hardware can only be used once in an XMega, but is applicable with each UART.

IRDA/SIR works as the same as a MAX232 except that the data is not send over lines but over invisible infra red light. As a result there is the limitation to halb-duplex, which means that only one device can send at the same time. Normally the usable destination with IRDA is >1m. Using a higher infrared tx-power it is possible to extend this to >10m.

Because oft the hardware support of the UARTs the IRDA is outclassing the RC5! Furthermore in contrast to RS232 there can be multiple participants. It can be a simple Bus system.
If an IRDA transceiver should be used then the driver must be setup for this with this define:

Define
SerPortC1
= 115200, IRDA;

Nearly all SerPort functions can be used with IRDA.
With a bi-directional operation only the half-duplex mode is allowed. So only one master can send data at one time. Furthermore all IRDA transceiver always receive their own Tx-data which of course is not welcome. So with a transceiver mode it must be clear that the own Rx must be disabled when sending data.. If the data is completely sent, the receiver must be re-enabled. To support this there are two system functions:

[image: image14.png]ErE

soepRlUl OZFIML

mE 3
{0 o
00 o1

oo

o 1l

206 waav
@e _ 3AVISNdO
ane 0gdoxs
tefge, et
TEE— S zaxt
Bl
| oswiesd 10az0s0 |52
S —£]1sonssa aoanoso [
2 ssred s0e 2
—{ e a2
—H onrerzea e
—£{unss 220 52
—ZHowes oawas [T
0anos [
—z{ zoouad 3
vy
vamy [
sy [
SN
evdEny
Ty
g 2
ooy [
3w
Sonv [
29 oy
9

ErEE)
e

an

s w00y

.

B

e vos
s
ooam
o oon

T
Ca——
F—ae

BN

foa
Tnos

i)

E-Y

IAVIS WOMETI

e HAISWN

- ano oodms
@ e aNev iaddd
anov ano osii8s
ba o IS 104050
%% b ONSEd 20d/1050
ova o Ssrad sodial
va . 030/10wEaSO0aL
105 . ZINVDOWZAE0dISHL
e Hiied zoanor
S —Hvoxiavioas 10avas
TesEa Bl | £osnas
S vy
JAVTS DOTYNY 2" vy
avasNY
PNy
BNy
e vy
ano _ossuaov et
o vas VAN
05
00s0 N =y
1050 90 20
oo

TSI
o

z

Procedure IRDAtxStartXX;
Procedure IRDAtxWaitIdleXX;
The XX stands for the IRDA UART (C0..F1).

 Example program:
two examples are in the directory
..\E-Lab\AVRco\Demos\XMega_IRDA

[image: image15.png]=]

LIOMIBN [

&

Sapeways Ny ML
007 NV T-IML

poads Joytiy 10}
Iyuic] an

5n

+08 doay

o VIAVISAHILSYN

eos aoy

ao EIAVISAHIISYN

208 waav.

e CIAVISHILSYIN

o LIAVISAHILSYN

10s ooy,

skt v
= amay | 3wy o
FEEVEI 99 ELCeE FeEvEw TSI 95h

3.11.5 Advanced Functions for Controller with USART

The main improvements of controllers with USART are as follows:

DataBits : 5/6/7 or 8 bits. The functuality of the multiprocessor-bit (bit9) is also extended.

StopBits : 1 or 2. Previously only possible by using the 9th bit.

Parity : none/even/odd. Previously also only possible by using the 9th bit and must be calculated

 by the driver.

3.11.5.1 Types, Procedures and Functions

If an AVR CPU has an USART the AVRco system exports some additional types and functions that don’t exist with standard UARTs.

Types

For a better handling and readability of the additional functions with the USART the system exports these types:

Type tParity
= (parNone, parEven, parOdd);

Type tDataBits
= (DataBit5, DataBit6, DataBit7, DataBit8);

Type tStopBits
= (StopBit1, StopBit2);

Procedures and Functions

With USARTs it is no problem to change several parameters at runtime.

This is done by the following procedures:

Procedure SerStopBits (bits : tStopBits);

// Stopbits (1/2) COM1

Procedure SerStopBits1 (bits : tStopBits);

// Stopbits (1/2) COM1

Procedure SerStopBits2 (bits : tStopBits);

// Stopbits (1/2) COM2

Procedure SerStopBits3 (bits : tStopBits);

// Stopbits (1/2) COM3

Procedure SerStopBits4 (bits : tStopBits);

// Stopbits (1/2) COM4

Procedure SerDataBits (bits : tDataBits);

// Databits (5/6/7/8) COM1

Procedure SerDataBits1 (bits : tDataBits);

// Databits (5/6/7/8) COM1

Procedure SerDataBits2 (bits : tDataBits);

// Databits (5/6/7/8) COM2

Procedure SerDataBits3 (bits : tDataBits);

// Databits (5/6/7/8) COM3

Procedure SerDataBits4 (bits : tDataBits);

// Databits (5/6/7/8) COM4

Procedure SetParity (par : tParity);

// Parity (N/E/O) COM1

Procedure SetParity1 (par : tParity);

// Parity (N/E/O) COM1

Procedure SerParity2 (par : tParity);

// Parity (N/E/O) COM2
Procedure SerParity3 (par : tParity);

// Parity (N/E/O) COM3
Procedure SerParity4 (par : tParity);

// Parity (N/E/O) COM4
Procedure SerBaud (var baud : word);

// Baudrate var Parameter COM1
Procedure SerBaud (const baud : byte..longword);
// Baudrate const Parameter COM1
Procedure SerBaud1 (var baud : word);

// Baudrate var Parameter COM1
Procedure SerBaud1 (const baud : byte..longword);
// Baudrate const Parameter COM1
Procedure SerBaud2 (var baud : word);

// Baudrate var Parameter COM2
Procedure SerBaud2 (const baud : byte..longword);
// Baudrate var Parameter COM2
Procedure SerBaud3 (var baud : word);

// Baudrate var Parameter COM3
Procedure SerBaud3 (const baud : byte..longword);
// Baudrate var Parameter COM3
Procedure SerBaud4 (var baud : word);

// Baudrate var Parameter COM4
Procedure SerBaud4 (const baud : byte..longword);
// Baudrate var Parameter COM4
XMega

Procedure SetSerStopBits(Usart : tUSARTenum; bits : tStopBits); // Stopbits (1/2)

Procedure SetSerDataBits(Usart : tUSARTenum; bits : tDataBits); // Databits (5/6/7/8)

Procedure SetSetParity(Usart : tUSARTenum; par : tParity); // Parity (N/E/O)

Procedure SetSerBaud(Usart : tUSARTenum; const baud : byte..longword);
// Baudrate const Parameter
Please note that these parameter changes at runtime can result in 1..2 wrong characters if the changes are made when a receive operation is going on.

SLIP packet oriented Protocol

Networks basically work with so called packets or frames. This is a block of data which is framed (limited) by a start and end condition. This is absolutely necessary to have a secure data transmission. These frame limiters can be constructed in different ways. For example a well defined pause between two data blocks like ModBUS RTU or there are special control bytes if the data is plain ASCII (A..Z, a..z, 0..9) like (ModBUS ASCII).

With more complex protocols like CAN, Ethernet, I2C/TWI etc. the framing is explicitely implemented in the driver hardware. Without such framing it is a difficult task to identify incoming frames on the receiver side. But also with timeout-controlled protocols this is not trivial. On both sides timers and interrupts are involved to avoid unexpected time slots or timeouts. With ASCII protocols there is a big overhead on both sides to convert binary data into ASCII chars (e.g. HEX) and vice versa.

But with simple bit-serial interfaces like UARTs and SPI building frames, clearly recognizing them is a huge problem. For this purposes there is a powerful protocol called SLIP.

Serial Line Internet Protocol

The word “Internet“ can easily replaced by “Interchange“ or “Interface“ because SLIP basically and only defines the frame-start and frame-end handling. All the other stuff must be handled by a processing layer above SLIP.

SLIP provides a secure recognition of the frame start and frame end condition and extracts the pure data packet for the application. The data contained in the packet can be of any type and is not changed or analysed by SLIP.

The AVRco system provides a SLIP implementation in conjunction with the serial interfaces (UARTs) 1..4 where they are present in the CPU. There is only one transmit function and one receive function per channel.

Procedure SerOutSLIP(src : pointer; count : word); // UART1

Procedure SerOutSLIP1(src : pointer; count : word); // UART1

Procedure SerOutSLIP2(src : pointer; count : word); // UART2

Procedure SerOutSLIP3(src : pointer; count : word); // UART3

Procedure SerOutSLIP4(src : pointer; count : word); // UART4

XMega

Procedure SerOutSLIPC0(src : pointer; count : word); // UARTC0

Procedure SerOutSLIPC1(src : pointer; count : word); // UARTC1

Procedure SerOutSLIPD0(src : pointer; count : word); // UARTD0

Procedure SerOutSLIPD1(src : pointer; count : word); // UARTD1

Procedure SerOutSLIPE0(src : pointer; count : word); // UARTE0

Procedure SerOutSLIPE1(src : pointer; count : word); // UARTE1

Procedure SerOutSLIPF0(src : pointer; count : word); // UARTF0

Procedure SerOutSLIPF1(src : pointer; count : word); // UARTF1

These procedures send a data packet through the selected serial interface/UART. Parameter src defines the data source and must be a pointer. The parameter count defines the packet size in bytes. The procedure returns if all data bytes are placed at least in the TxBuffer of the UART. The parameter count must never be zero.

Function SerInpSLIP(dst : pointer; tmo : byte; count : word) : word; // UART1

Function SerInpSLIP1(dst : pointer; tmo : byte; count : word) : word; // UART1

Function SerInpSLIP2(dst : pointer; tmo : byte; count : word) : word; // UART2

Function SerInpSLIP3(dst : pointer; tmo : byte; count : word) : word; // UART3

Function SerInpSLIP4(dst : pointer; tmo : byte; count : word) : word; // UART4

XMega

Function SerInpSLIPC0(dst : pointer; tmo : byte; count : word) : word; // UARTC0

Function SerInpSLIPC1(dst : pointer; tmo : byte; count : word) : word; // UARTC1

Function SerInpSLIPD0(dst : pointer; tmo : byte; count : word) : word; // UARTD0

Function SerInpSLIPD1(dst : pointer; tmo : byte; count : word) : word; // UARTD1

Function SerInpSLIPE0(dst : pointer; tmo : byte; count : word) : word; // UARTE0

Function SerInpSLIPE1(dst : pointer; tmo : byte; count : word) : word; // UARTE1

Function SerInpSLIPF0(dst : pointer; tmo : byte; count : word) : word; // UARTF0

Function SerInpSLIPF1(dst : pointer; tmo : byte; count : word) : word; // UARTF1

These functions wait for an incoming data packet until either it is completely received or the timeout has expired. The parameter dst defines the destination address of the received data and must be a pointer of any type. The parameter tmo defines the timeout in Systick counts for each single byte to receive. The parameter count defines the maximal possible byte count to receive (limit). If the packet is larger as this value the function returns with an error, result = 0. If a timeout happened the function also returns with a zero value. If successful the result is the packet size in bytes.

In order to work as expected the driver of the used SerPort must be imported and defined. Furthermore the Timeout of this SerPort must be activated. Please note that a SerPort buffer can only be max. 254 bytes in size. This means that a packet can only have a size of max. 252 data bytes because there are two additional frame bytes. In addition the SLIP algorithm must always replace special data bytes by two replacement bytes. This means with worst cases that a RxBuffer with a size of 254 bytes only 126 effective bytes can be transmitted.

But with transmitting there is never a problem even with large packets because the driver waits until all bytes are stored into the TxBuffer.

So there is a problem with receiving large packets. If the application is unable to continously poll the corresponding RxStat function and then does not immediately call SerInpSLIP the RxBuffer Interrupt driver ignores additional Rx-Bytes and this frame becomes invalid.

There will be absolutely no problems if the RxBuffer is at least twice the size of the largest expected Rx-Frame.

RS485 Line Driver

If the corresponding SerPort uses the RS485 mode then the SerOutSLIP driver handles this automatically without intervention of the application.

SLIP sample:

program SLIPtest;

Device = mega128, VCC = 5;

Import SysTick, SerPort;

Define

 ProcClock = 16000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $040, iData;

 FrameSize = $060, iData;

 SerPort = 115200, Stop2, TimeOut;

 RxBuffer = 64, iData;

 TxBuffer = 64, iData;

Implementation

{$IDATA}

Var

 Test : word;

 ptrRx : pointer;

 ptrTx : pointer;

 BuffRx : array[0..15] of byte;

 BuffTx : array[0..15] of byte;

begin

 EnableInts;

 BuffTx[2]:= 192;

 BuffTx[6]:= 219;

 ptrTx:= @BuffTx;

 ptrRx:= @BuffRx;

 SerOutSLIP(ptrTx, 8);

 mDelay(20);

 // if RxStat then …

 test:= SerInpSLIP(ptrRx, 10, 8);

end SLIPtest.
3.12 Serial Network LAN

Not for XMegas, use SlipPorts instead.

Distributed Intelligence is not only a slogan. Distributed computing power within a system yield enormous advantages: less wiring, more computing power at the same time and simplified programs. If a computer or a CPU is placed where it is needed, and often there are several such places in a system, then communication between the individual programs/CPU must be established.

This data transfer normally is made by the implementation of a Local Area Network (LAN). There are several ways to realize such a network. Most of them need a special network controller (Ethernet, ArcNet, InterBus-S, ProfiBus, CAN-BUS etc.) or at least a CPU, in which the controller is build-in (e.g. CAN-Bus). These controllers have a good link to the network.

Unfortunately often there is no place for an additional controller circuit or the price is too high. CPUs with build-in controllers are rare at this time or the pincount or case size is too high, plus they are not cheap.

Because most of the single chip CPUs have a serial interface (UART, SCI), it’s a good idea to use them for networking purposes. Old mainframes used the async serial interface many years ago for networking.

All of the usable Atmel AVR-CPUs have an UART. A special feature of them is that the transmission can use the ninth bit as a data bit. This 9th bit can be used as a marking for the address of a frame. Some 8051 derivates also have this feature.

The present implementation is intended mainly for such CPU-CPU connections. The strategy consists of a Single-Master and Multi-Slave system. For a secure communication an appropriate protocol is used.

Basics

A Single-Master / Multi-Slave system is implemented which consists always of a Master and at minimum one Slave.

The Master controls all connected Slaves. No Slave should gain control of the BUS, although this is always possible. All data transfer, whether to or from the Slave should be initiated by the Master. By this means serious difficulties with collisions and priorities are eliminated.

Networks commonly work with packets also called frames. Through the use of frames there is some overhead, but on the other hand the security of the system is increased. To avoid additional problems, there is no full duplex transfer. In that way the cheap and secure RS485 line drivers can be used.

With the half-Duplex operation only one subscriber can send data at one time. All others are listening. For example the master requests a frame from a slave. For that it sends a frame to the slave with the desired contents (address, data, commands). The slave recognizes its address and informs the user program about the reception of the frame. If the user program in the slave must send an answer to the master (not a must), it responds by sending a frame, which inherent address is its one Node address. All other slaves ignore this frame. The Master places the received frame in its buffer and informs the application.

The contents and meaning of a frame is ambiguous and has to be defined by the user, as does whether a slave responds with a responding frame or not. If the master is waiting for an answer, the slave should respond immediately because the master is waiting and sends no further frames until an answer is received to avoid BUS collisions. But this “handshaking” must be done by the application. It is not handled by the master or slave software itself.

Principles of operation:

The Master receives all frames that are send on the BUS and provides it to the application program.

There is no analysis or utilization in the master except the checksum checking if any.

Each Slave always listens on the BUS, but fetches only frames if the frame inherent address is identical with its on address (node address). There is no analysis or utilization in the slave except the checksum checking if any. It’s the job of the application to do this.

The slave doesn’t respond with an acknowledge or an answer to the master. This is also the job of the application. There is one exception: if the slave is in AutoAck mode. In this case the slave responds with a short frame without contents to the master. It consists of the slave’s address, FrameLen(0) and checksum if any. This also is only true if the received Frame had no errors.

Slave addresses must be greater than 0. The address “0” is reserved for the Broadcast to all slaves.

Only the master should send a Broadcast because of collisions. All slaves receive the frame, and their userprogram must analyze and interpret it. But there must be no reaction (sending a response frame) of any slave. Also AutoAck is disabled in this case.

The actual frame length (bytes) of a frame can range from 0 bytes up to LANframe –1. The addresses can be 8 or 16 bits (selected by a Define). The checksum (also determined by a define) can be: none, 8 Bit Check, 16 Bit Check or 16 Bit CRC-Check.

Variable is only the actual frame length. Address length/size and checktype must be determined by defines and can’t be changed at runtime.

Structure of a frame:

| ADDRESS | FRAMELENGTH | DATA, DATA ... | CHECKSUM |

Address:

The address can consist of a byte (1..255 slaves) or a word (1..65535 slaves). Normally a byte address is sufficient, because the usual RS485 line drivers can only handle 255 participants at maximum. Define LANadr determines the address width.

Each slave should have a unique address, but there may be exceptions. The master has no address, because it receives all frames, regardless of the inherent address. The address bytes are sent with the

9th Bit set to one. If two byte addresses are used, the low byte is send first.

FrameLength:

The frame length is determined by define LANframe = nn. If parameter nn < 256 there is one length byte transferred, if nn >= 256, 2 length bytes are transmitted. The actual frame length can be between 0 and

nn bytes. Because of this, all BUS subscribers must have the same kind of address size (Byte/Word), so the frame descriptors are always identical. The implemented buffer sizes can vary in the range of a byte or word.

DATA:

The data area within a frame is defined by the length byte or word. The data length can be zero so the length byte/word also contains a zero.

CHECKSUM:

The kind of the checksum is a setup option. The check is computed over the complete frame. There can be an 8bit, a 16bit checksum, or a 16bit CRC.

Attention:

The address width, the max. frame length and the checksum type must all be defined at design time with the use of “Define”, as must the Master/Slave mode. A change at runtime is not possible. The actual frame buffer sizes can vary in the participants but only in the range of 0..FrameLength. Either all nodes possess a buffer size smaller than 256 Bytes (FrameLength is in one byte) or greater than 255 bytes (FrameLength is in one word). A mix is not allowed.

Transfer:

The data transfer is completely handled in interrupt procedures. Therefore it is guaranteed if a frame is completely built, this frame is transferred to the target in a very short time. It is important that interrupts must not be disabled for a long time. This is espcially true at high baud rates. At 9600Bd each msec a receiver/transmitter interrupt occurs. At 56kBd this time is 160usec. In the last case for example, disabling the interrupt (e.g. SysTick) for more than 100usec can cause bytes to be lost.

The used baudrate of the net must be identical in all slaves, but need not be in the standard grid

(9600, 19200 etc.).

Line driver control:

Regardless whether there are wireless modems, RS485 lines or TTL line drivers, all possess the same property: they are not full duplex. Either there is a transmit going on or a receive, but never at the same time like RS232 does. Therefore each BUS participant must have a tristate or switch off type line driver for listening only. This switching is done with a Port Pin, which is declared by “Define LANctrl = Port, Bit;”.

The pin is controlled by the system. The application has nothing to do with this.

3.12.1 Implementation

Imports:

The LANport must be imported, like usual in the AVRco system, by an import directive.

Import LANport;

Defines:

LANport

Declaration of the used UART

Define LANport = SerPort;
{SerPort2}

LANctrl

Definition of the control port and pin for the line driver. As an option also None is possible.

Define LANctrl = PortA, 5;
{PortName, bit number}

LANmode

The operation type of the unit as a master or slave must be defined. A change of this type at runtime is not possible

Define LANmode = Master;
{Master/Slave}

LANbaud

The operation modes of the LAN must be identical in the Master and Slave and must be defined by the following defines:

Define LANbaud = 57600;
{Baudrate}

The baudrate can be arbitrary but the same in the whole net. The typical RS232 tolerance of +/- 5% must not be exceeded. The lower the error the higher the possible baudrate and cable length.

LANadr

The address size (Byte/Word) determines the number of possible slaves. Although it’s possible to implement more than 255 slaves (LANadr = 16) this is unrealistic. Simple network interfaces (e.g. RS485 driver) are unable to drive more than 128 receivers. With wireless modems this is not a problem.

Define LANadr = 8 [,Mask];
{8 or 16 bit, [masked by LANADRMASK] }

If "Mask" is omitted a mask is not defined and used. If the import is present a variable "LANADRMASK" of type Byte or Word is created, dependant of the defined address size (8/16bit).

This variable can be accessed:
LANADRMASK := $0F;

All high (log 1) bits are treated as DON'T CARE. This means that these bits are ignored in the address comparator when the incoming frame address is compared with the local node address.

LANframe

Master and Slave both have a receive- and a transmit buffer. All slaves should possess the same buffer size as the master. The defined buffer size determines the required internal memory. The transferred frames can be less than but never larger than this parameter.

Because the actual frame length is transmitted as a parameter in the frame, all frames must be managed with a byte or a word as the length information. A mix of them is not possible. This limitation simplifies the protocol and its handling dramatically and is not a serious limitation. All frame size definitions therefore must fit either into a byte or a word, depending on whether the frame is smaller than 256 bytes or larger.

Define LANframe = 16, iData; {Framesize max. 16 bytes in iData}

LANcheck

A check of the received frames is very important with networks. It is recommended to use the 8bit check. If the frames are relatively long (>50 bytes), the 16bit check should be selected. The CRC check is only recommended with very long frames and/or noisy environment. CRC checks consume a great deal of time and code space Code.

Define LANcheck = ChkSum8; {ChkSum8, ChkSum16, CRC16}

3.12.2 Exported Variables

3.12.2.1 Memory Organization

All the LAN related variables reside one after another in the defined memory area. The order is, beginning with the lowest address, the following:

LANNODEADR
Byte at < 256 LAN nodes, Word at > 255 LAN nodes. SLAVE only

_LANRXPTR
Byte at a frame length < 256 bytes, word at a frame length > 255 bytes

LANRXSTATREG
Byte

LANRXADR
Byte at < 256 LAN nodes, Word at > 255 LAN nodes

LANRXLEN
Byte at a frame length < 256 bytes, word at a frame length > 255 bytes

LANRXBUFF
Array[0..LANframe-1] of Byte;

_LANRXCHK
byte if ChkSum8, word if ChkSum16/CRC16

_LANTXPTR
Byte at < 256 LAN nodes, Word at > 255 LAN nodes. SLAVE only

LANTXSTATREG
Byte

LANTXADR
Byte at < 256 LAN nodes, Word at > 255 LAN nodes

LANTXLEN
Byte at a frame length < 256 bytes, word at a frame length > 255 bytes

LANTXBUFF
Array[0..LANframe-1] of Byte;

_LANTXCHK
byte if ChkSum8, word if ChkSum16/CRC16

LANnodeAdr

This variable is only present in the slave. The type is of byte at < 256 LAN nodes and a word with

> 255 LAN nodes. If the slave recognizes an address (9. Bit set) it compares the incoming frame address with the variable “LANnodeAdr“. If both are equal the frame is received completely and stored into the locations LANrxAdr.._LANrxChk. Addresses with the value “0“ are recognized as Broadcast Frames and always stored, but there should never be a response from the slave.

Having more than one slave with the same address should be avoided. The address should be unique. If there are several slaves with the same address, none of these devices must respond to a frame from the master, otherwise BUS collisions are guaranteed. There is no simple way to handle such collisions.

_LANRxPtr, _LANTxPtr

These two variables (Byte or Word) must not be changed! They are for internal use only while a receive or transmit is occurring. They are byte sized if “Define LANframe“ < 256 bytes or word sized with

“Define LANframe“ > 255 bytes.

LANRxStatReg, LANTxStatReg

These two variables (Byte) must only be read! Both pseudo status registers are continuously updated while a receive or transmit of a frame is going on. If idle, all bits are zero. If the action proceeds the bits become a “1” in turn from right to left. If the action is finished successfully, all bits are “1’ and the byte has the value $FF. Values between $00 and $FF mean either an error has occurred or that the frame isn’t completely received or transmitted yet. If a send frame is processed, there can be no error. If a frame was received a $9F means that a checksum error occurred. The user program must poll the bit7 of this register to see if a frame is complete or not. A correct and complete frame shows a $FF.

(* bit0,1
:
00 = idle
*)

(*

01 = first adr
*)

(*

11 = second adr *)

(* bit2,3
:
00 = idle
*)

(*

01 = first len
*)

(*

11 = second len
*)

(* bit4
:
 0 = rx/tx frame
*)

(*

 1 = rx/tx frame
*)

(* bit5,6
:
00 = idle
*)

(*

01 = first check
*)

(*

11 = second check
*)

(* bit7
:
 0 = processing
*)

(*

 1 = rx/tx complete
*)

LANRxAdr, LANTxAdr

These vars are of type byte if “Define LANadr = 8“ and a word if “Define LANadr = 16“

Master:

The master receives all frames, which were send by another BUS-member. The user’s program can identify the sender with the contents of the var “LANrxAdr”.

If the master sends a frame, it must define the desired slave by writing the slave’s address into the variable “LANtxAdr”. The address “0” defines a Broadcast Message, this means all members of the network receive this frame, process it but never send a response (danger of collision).

Slave:

A slave only receives those frames whose internal address is equal to its own node address. This inherited address of the incoming frame is stored into the location “LANrxAdr”. Normally this address is the same as the node address of the slave or it is a Broadcast frame. The user’s program must check this address to find out whether it’s a unique frame or a Broadcast frame and makes the relevant decisions.

In order to transmit a frame the Node address of the slave is stored into “LANtxAdr”. The slave only should send frames with its own node address. Although it’s possible that a slave can send Broadcast messages or it can address another slave, this is very dangerous and must be arranged with the Master to avoid any collisions on the BUS.

LANRxLen, LANTxLen

These variables are of type byte if “Define LANframe“ < 256 bytes and of type word if “Define LANframe“ > 255 bytes. Frames can have a zero length. The maximum length cannot exceed the number of “Define LANframe = nn“. Basically all slaves and also the master should have the same “LANframe“ sizes. But it’s possible that some slaves have a shorter value of “LANframe“. The master’s user program must know this and only send frames to this nodes with a length so that they fit into the receive buffers of that slaves.

LANtxLen contains at send and receive the effective length of the telegram. Address, Checksum, etc. are do not count.

LANrxLen is updated whilst receiving a frame with the value which is received internal in the frame.

LANtxLen is set by the function “LANtxFrame(Node, len)“ and also transmitted within the frame.

LANRxBuff, LANtxBuff

The size of these two buffers is determined by the Define LANframe. The buffers can be seen as an Array of byte and therefore can be also accessed in this manner.

The indexes of this arrays are 0 to LANframe -1.

LANtxBuff[0]:= $56;

X:= LANrxBuff[6];

It’s recommended and very useful to overlay a structure (record) over the Rx part and the Tx part of the LAN memory. By that a symbolic access to the complete data structure is possible.

type tLANRec = record

LANstate
: byte;
// LAN state size and loc fixed

LANnode
: byte;
// rx/tx address size and loc fixed

LANlen

: byte;
// rx/tx framelen size and loc fixed

LANusr1
: byte;
// user defined

LANusr2
: word;
// user defined

LANdata
: array [0..LANframe-4] of char; // user

end;

var

 LANRxRec[@LANrxStatReg] : tLANRec;

 LANTxRec[@LANtxStatReg] : tLANRec;

// Frame belegen

 LANTxRec.LANusr1 := $30;

 LANTxRec.LANusr2 := $3231;

 LANTxRec.LANdata[0] := '3';

_LANRxChk, _LANTxChk

Their type is a byte if ChkSum8 and a word if ChkSum16/CRC16 is defined. The checksum is calculated over the complete frame (LANRXADR + LANRXLEN + LANRXBUFF). The same is true for both Tx and Rx. The checks are processed automatically while receiving and transmitting.

3.12.3 Exported Functions and Procedures

Function LANRxStat : boolean;

This function returns a true if a frame has been received complete with or without errors and is not invalidated with “LANrxClear“. Then the program must analyze the LANrxStatReg to check for errors. As long a frame is complete, also with errors, a new incoming frame is discarded. It’s the job of the user program to process a received frame as fast as possible and then invalidate it so a new frame can be received. Otherwise frames can be lost.

If the user‘s program in the master and slave are working with an acknowledge, this means if the master sends a frame and then waits for a response from the slave, no more frames are sent by the master until the slave sends an acknowledge. This way no frames can be lost, but the throughput is somewhat (or greatly) reduced. It is the job of the participating devices and/or the programmer to implement such a method.

Procedure LANRxClear;
The statusbyte of the RxBuffer is reset. Another frame can be received.

Function LANTxStat : boolean;

This function checks whether a frame is already send or not. If the frame is send or invalidated by LANtxClear the function returns with a true, otherwise a false is returned. A new frame can only be send

if the actual frame is completely transmitted or the state is reset with “LANtxClear“.

Procedure LANTxClear;

The status byte of the TxBuffer is reset. Another frame can be transmitted.

Function LANTxFrame (node : byte[word]; len : byte[word]) : boolean;

If the transmit operation was successful a true is returned, otherwise a false is returned. With LANtxClear a frame can be reset without deleting the data and LANtxFrame can be called again. If the frame can be transmitted the “len“ parameter is stored in “LANtxLen“. The parameter “node“ should have always the same value as the slave’s variable “LANnodeAdr“. It is stored into “LANtxAdr“. The function then starts a transmit operation by enabling the TxInterrupt.

Procedure LANrxAutoAck (const OnOff : boolean);

This procedure only exists in slave mode. If the AutoAck is enabled, the slave immediately responds with an empty frame to the master (LANtxLen = “0“). The slave uses its Txframe for this. Then the master finds out whether a slave is still “alive“ and received the frame without errors. With a Broadcast frame no acknowledge will be sent.

3.12.4 Multi-Processing

If processes are used, sometimes it is necessary to suspend a waiting process until a frame is received. This can be done with “WaitPipe(LANrxBuff)”. The process waits until the first byte of the frame is received. Then the process must poll via LANrxStat and/or LANrxStatReg.

3.12.5 Line Drivers

Basically the LANport uses the CPU internal asynchronous serial interfaces. They must have a controllable 9th bit to distinguish between addresses and data.

V24/RS232 line driver (e.g. MAX232) are not suitable for this application because they don’t have the

tristate property. All line drivers, including the master’s, are tristated if the device is idle, so every member of the system is always listening. Only if a frame has to be transmitted the driver is activated and gains control of the BUS.

Normally if a wired connection between the participants exists the RS485 line drivers are used. They are cheap, robust, very fast and very long distances are possible. They fulfill the important tri-state property very well. A simple two-wire connection can be used. Common ground is not absolutely necessary.

A good idea is to use twisted pair cable, but this also is not necessary. Even shielding can be eliminated, even with a speed > 100kBaud.

[image: image16.png]vees vees
R1 |R2 1o
vees o [oo
] PR
o] 20 —porrr
o8 P °
s So NP e—porr 2
e oy S P27 —poars
< sss A
S So—Za e
i1 ForTie
2w
@b o b [EroRTT T
GND ADDR $38/53(7
o
ano—fol
SR B
vee et
WooRs
t »
e SOA T
ke = e poRT2
o A es[o
2w
@b Lo ol T c
ADDR $39/531 7
e vee ics sssen e
6 [vee P4 PORTI O
e POe—porrt
i t—PorTy 5
15 [Ee P27 porrs
1% Pl
vees oo a0 ba[3 PORTM PoRTa
Ve A PS5
5 1 ForTe
a2 P8 2 —porTer il
555 20
15N SPT]
e
@b ao oo _
q
VCC ICS 95544 o |
U6 Ve po |4 PORT40 et B
151YEC PO —poaTar
1N Pl e porTay 5
i 7 porTas
oA Rt
./6 oo 1A B —rorar poTe
veco o] S35 Veco—mA P —pormas
v 2 !’ K 11__PORT45
a2 P8 2 —porTar il
3] 8 $20, 4
NP0 saisan gl |
e
9554 Addr $20..527
9554A Addr $38..$3F
vees vees
o o
ot oyl iy | "Iy | 12C Port Expander
i T I, | 4x8sitport
Locol i oo P g
o AN
SR ELAS | COMPUTERS Tel.07268/2124.0 Copr it B

Loco Dot 1e-Sep-2003

074806 Bad Rappenau Fax 07263/3124-2¢

schematic LAN

3.13 USBport Driver USBsmart XMega
Embedded systems ofeten need a connection to a host, eg a PC. For a long time this was the serial interface through a COMport/UART. Todays PCs and mostly Laptops and Notebooks often don’t provide a COMport. It is expected that every peripheral device provides an USB interface.

There are several solutions to realise an USB connection with an AVR:

1. a FTDI Chip on board which builds a vitual COMport an the PC. On the side of the AVR the FTDI behaves like a MAX232. Disadvantage: board place, costs and a possible conflict with COMports on the PC side.

2. HID and USB-AVRs. Simulation of a mouse or a keyboard on the AVR side. Advantage: cheap, a minimal cost on the PC side. Drawback: weak properties of the system.

3. CDC and USB-AVRs. The system provides a virtual COMport on the PC, similar to FTDI. Advantage: only an INF file must be constructed for the PC side, but this is absolutely not trivial. Drawback: conflict with other COMports because it is not sure that the device is always located on the same COMport and so it must always be searched.

4. Unique USB and USB-XMegas. This is the most elegant but also the difficultiest way for an USB connection. Here the XMega is recognised as an absolutely new and unique USB device. Drawback: a DLL, a SYS and an INF file for the PC must be build and provided. Very difficult. The communication on the PC is much more complex compared with the other solutions. Advantage: all features of the USB can be used: sending commandos through the controlpipe (Endpoint0), one date pipe with 64 bytes, flexible packet sizes. High speed, upto 500kByte/sec! All drivers and files for the PC are build by two mouse clicks!

The implementation provided here use the unique interface described in 4. On the AVR side the XMega-USB driver of the AVRco system provides powerful but simple functions. All XMegas with internal USB interface are supported. Interupts are not used here and the Endpoint count is limited to one. So a very small (<2kB) but powerful and fast driver is provided. Because there are no Interrupts all USB functions must be polled.

Control Pipe. The Control Pipe (endpoint0) can be used to force a real hardware reset on the AVR send by the PC. Furthermore the Control Pipe can pass private commands to the AVR. This data is passed via a Callback function to the AVR application. Also small data can be received or transmitted here. In order to satisfy the USB requirements the application should continously poll the control pipe (Endpoint0).
Simple Interface. There is one 64byte sized pipe provided (Endpoint1 = Rx/Tx). The important data transfer must be accomplished through this endpoint. This is done by receiving or transmitting data blocks with upto 64 bytes. In order to satisfy the USB requirements the application should continously poll these Endpoints.
3.13.1 Import of the USB Driver
As always in the AVRco System the driver must be imported:

Import SysTick, USBsmart, ...; // smart version oft the XMega USB driver

The SysTick is optional and not needed here.
3.13.2 Definition of the USB Driver

The USB driver needs some essential Defines which determine the way the driver connects to the Host.

 // The XMega USB occupies the internal 32MHz source, so the internal 2MHz osc must be used here

 OSCtype
= int2MHz,

 PLLmul = 16,

 prescB = 1,

 prescC = 1;
// CPU runs with 32MHz
 SysTick
= 10;

// msec
 StackSize
= $0064, iData;

 FrameSize
= $0064, iData;

 USBmanufact
= 'E-Lab Computers'; // max 31 bytes

 USBprodName = 'xMiniUSBApp'; // " “
 USBpid
= 30;

// product ID
 USBvid
= $1234;

// vendor ID

 USBprodRel
= 201;

// product release

 USBcurrent
= 200;

// current consumption, max 500mA

 USBvBUS
= PortB.7;
// port and pin to check the USB power connection. optional
SysTick is optional.

USBvid is the Vendor/Manufacturer ID. Provided from the USB.org (costs).

USBpid is the Product ID. Can be any.

USBprodRel is the actual version of the product. Can be any.

USBmanufact is the name of the producer as a string.

USBprodName is the name of the product as a string.

USBcurrent is the expected current consumption through the USB cable in mA (max 500mA)

USBvBUS the Port Pin where the application can identify a connected Host (5Volt). Optional.
USBsernum is the serial number of the device and should not be defined. Instead the XMega internal serial number is used. As an option the user can provide a fixed/constant serial number.
All items are mandatorial though only USBvid and USBsernum are really minded by the Host.

If the serial number of all devices of this manufacturer and type are constant then there is no action when a new device of this kind is connected. Only once at the very first time the PC asks for a driver. If the serial number changes so with each new serial number a question for a correct driver is raised.
3.13.3 Callback Function

The Host program is able to send some private commands through the Control Pipe (endpoint0). To handle this in the device the main must provide a Callback Function. The address of this function must be passed to the driver:

 // User function to receive EP0 ControlRequests from the Host

Function myUSB_ControlRequest(bRequest : Byte; wValue : word) : boolean;
Begin
 // …
 // this function returns with user defined commands in bRequest and optional parameters

 // in wValue send by the host

end;

…

 USB_SetControlCallback (@myUSB_ControlRequest);

If myUSB_ControlRequest is not present or not passed to the driver by USB_SetControlCallback then there is no callback and incoming commands are ignored. If the application can handle the request type defined by “bRequest” then the function must return a true, otherwise a false. The requests 0..15 should be reserved for the system.
3.13.4 Exported Functions and Procedures

Procedure USB_Init(pFirstRxBuf : pointer);
This procedure initialises the USB hardware in the XMega. The pointer is necessary because a Host can send data after the init. This pointer must point to a 64byte memory area.

Procedure USB_SetControlCallback(myUserProc : tUserSetupProc);

This procedure passes an optional Call-Back function address tot he driver which then the driver calls if a Vendor Requests (private command) is received in the Control Pipe (Endpoint0).

Procedure USB_ControlJob;

This procedure must be called continously (polling). It checks for request, commands etc. coming from the Endpoint0 and handles them. If the time gaps are too long (>50msec) the Host can run into time-outs which then can result in a complete communication abort. It makes sense to place this job into a Task.

Procedure USB_ControlSend(pData : Pointer; size : word); // send Controlrequest Data

If a bRequest is handled in the ControlCallBack then it must be always closed with this procedure. Then the pointer can point to a data block and in “size“ the byte count is returned. If there is no data to return then the pointer must be NIL and size must be zero.
Function USB_RxDataAvail : boolean; // check if Data on Endpoint1 received

This is the Rx poll function. It must be called contiously. If the time gaps are too long (>1sec) the Host can run into time-outs which then can result in a complete communication abort. With a true returned the byte count in the RxBuffer must be called with USB_RxCount. Then the buffer data can be accessed. If this is done then the RxBuffer must be released with USB_RxSetBuf. After this the driver accepts new data from the Host via Endpoint1.
Function USB_RXcount : byte;

If data is available the this function must be used to find out the blocksize/bytecount.

Procedure USB_RxSetBuf(Buf : Pointer); // connect Endpoint1 do your buffer

If any data was received through the Endpoint1 (USB_RxDataAvail) then the RxBuffer must be released so the driver can accept new data from the Host. The pointer must point to a 64byte sized buffer.
The buffer must be global and on even address, Align2
Function USB_TxSend(pData : Pointer; size : byte) : boolean; // Result send OK or Timeout

If the Host requests data then the pointer must point to a TxBuffer and with size the byte count must be defined. If there is nothing to send then this pointer must be NIL and size must be zero.
The buffer must be global and on even address, Align2
Function USB_TXcomplete : boolean;
After USB_TxSend is executed, this function should be polled until the Host has fetched the data. Any other operation until then doesn’t make sense. The user can implement a timeout in this poll loop.

Procedure USB_Detach;
Disconnects the USB driver from the host (PC).

Typical program flow:

USB_Init …

USB_RxSetBuf …

Loop

 USB_ControlJob;

 if USB_RxDataAvail then
 Count:= USB_RxCount;

 // do something with RXData

 USB_RxSetBuf(@Rxbuf); // we need more data ..

 endif;

 // fill TxBuf with data …
 USB_TxSend(@TXbuf,64);

 Repeat until USB_TxComplete;

A Demo and Testprogram can be found in the Demo directory “XMega_USBsmart” and “XMega_BootUSB”.

3.13.5 Host/PC Implementation

USB interfaces are pure Master/Slave systems like I2C or SPI. The PC is always the Host/Master and the device is always the Slave. A Slave never can send data to the Host, but the Host must read data out of the Slave. This must be taken in account with each communication between Host and Slave.

An USB device always needs a suitable driver on the Host/PC side. These maybe already existing ones like HID for mouse or Keyboard. Here there is no need for additional drivers. Then there is the mostly unknown and rarely used CDC interface (virtual comport) which only needs a specific INF-File. Proprieretary devices like printers or the E-LAB programmer always need a complete driver set consisting of a SYS-File, INF-File and sometimes a DLL.

The AVRco USBsmart implementation for XMegas also need these three driver parts. Because the constructions of them, mainly the SYS file, needs tremendous knowledge, the AVRco system provides a so called generic driver. It can be configured with parameters for nearly every device. This is the libUSB system. It provides a complete configurable driver set, including the automatic creation of the INF file. This text file contains the description of the driver and the capabilities of the device. The manual creation of such an INF-Files needs a huge knowhow and can be a nightmare for unexperienced users.

When creating a Windows application for USB controlled AVRco devices the DLL build by the libUSB system must be used. This DLL provides all necessary interface functions. The DLL functions used by the included Delphi application „USBtester“ are provided by the Unit „LibUSB.pas“. And there are much more. Used functions are:
3.13.5.1 Initialisation etc.

Procedure usb_init;

Function usb_find_busses : longword;

Function usb_find_devices : longword;

Function usb_get_busses : pusb_bus;
3.13.5.2 Device specific
Function usb_open(dev : pusb_device) : pusb_dev_handle;

Function usb_close(dev : pusb_dev_handle) : longword;

Function usb_set_configuration(dev : pusb_dev_handle; configuration : longword) : longword;

Function usb_claim_interface(dev : pusb_dev_handle; iinterface : longword) : longword;

Function usb_release_interface(dev : pusb_dev_handle; iinterface : longword) : longword;

3.13.5.3 Support

Function usb_get_descriptor_by_endpoint(udev : pusb_dev_handle; ep: longword; ttype : byte; index : byte;

 var buf; size : longword) : longword;

Function usb_get_descriptor(udev: pusb_dev_handle; ttype: byte; index: byte; var buf; size: longword): longword;

Function usb_get_string_simple(dev: pusb_dev_handle; index: longword; var buf; buflen: longword) : longword;

3.13.5.4 Data Transfer

Function usb_control_msg(dev : pusb_dev_handle; requesttype, request, value, index : longword;

 var bytes; size, timeout : longword) : longword;

This function must be used to send commands through the Control-Pipe (endpoint0).

The following parameters are mandatory to send „private“ commands and data to the Slave:

requesttype = $40

request = $00

value is the actual command

index is an optional word parameter

bytes and size are only used for reading data out of the controlpipe. Not used here
timeout is in msec

The commands (value) 0..15 are reserved for the AVRco system.

With the ControlMessage/endpoint0 it is possible to send several commands or data (Vendor Requests).

Commands 16..255 (msgUser+x) can be used in the user application and are processed by a Callback function in the XMega. The index parameter is optional. See the “RESET” example in the Delphi source.
Function usb_bulk_write(dev: pusb_dev_handle; ep : longword; var bytes; size, timeout:longword): longword;

This is the the actual tx-function. Data is send to endpipe1.

Parameter:

ep =
endpoint1

bytes = Buffer which contains the packet to send

size = count of the bytes to send. Any count with endpoint1, but the Slave must be able to receive and store

this packet in one piece. This means ist Rx-Buffer must be large enough. On the PC the packet size can be random. They are internally split into 64 byte sized blocks/packets and then send. The result

of the function is the total transmitted byte count. If the Slave is unable to read all bytes because of memory limitations, the result is always the count of the bytes send. Will be fixed later.
Function usb_bulk_read(dev: pusb_dev_handle; ep: longword; var bytes; size, timeout:longword): longword;

Das ist die eigentlich Empfangs Funktion. Daten werden von der endpipe1 abgeholt.

Parameter:

ep =
endpoint1
bytes = Buffer which must contain the received data

size =
count of bytes to receive. Any count with endpoint1. But the Slave must be able to send this packet in
one piece. Means ist tx-buffer must be large enough. On the PC the packet size can be random.
They are fetched in 64byte blocks and then returned in one packet. The result of the function is the total received byte count.
3.13.6 [image: image17.png]B g B \

o o
3SVHAE ONY 3SYHAZ aidwex3
19p0dUS J9U] YAY
i
e ae
ane s
e
)y
= omes
B s o
i e
invizca e oo
aNvisce —
Luece EEH) e 89Is.
fJumoe ¥3000N3
{soasav Luwcas = . S
Sl odvay Giwcas B o
55 £odreay VoIS d
arav oz
fadnay
camav
(sseyds) sjauueys ¢
o5n S
e
ane s
e
50— ===
——
Do owes avol
e Lagax
fintsed s :
1] SSrad o
o) oeee inwice sz
aNvisce
. sac00nz
aNob—z| anov juzae) er soIs
2] sowsav =
e e o
2 Sivoy
(sseudz) sjauueys z

B e
inao

Testprogram in the IDE PED32

[image: image18.png]STEPPER

Ver

tepFull 2

pr1 sTERRER.
pr _

BLIT71.3777

L6219

L6204

sTEPRER

©
i

STEPPER

PBLITT1.S7TT
L6219

Vers: StepHalf 4

L6203
L6204

Vers: StepHalf &

TEPPER

Vers: StepMini 6
Vers: StepMini 4

div. Siemens.
L6219

TEA 3718 Vers: StepMikro 8

STEPPER

ALLEGRO A3955 Vers: StepMikro 8

STEPPER

TEA 3718
L6219

PBLITTL..
TLE 5250

K

Vers: StepMikro 2

&b G GD

nonlinear Sinus DAC example

Zeichnung Step Modus Port Anschl. Treiber
Schematic Step mode. Port used Driver
Steprull 2 Pull Step 2 Port Pins StepF2
StepFull 4 Pull Step 4 Port Pins StepFd
StepHalf 4 Half Step 4 Port Pins StepHd
StepHalf & Half Step 6 Port Pins StepHs
StepMini 4 Quarter Stap 6 Port Pins StepMd
StepMini & Hexa Step 6 Port Pins Stepls
StepMicro 8 8 Microsteps & Port Pins StepMs
StepMicro 2 8 MicroSteps 2 Port Pine StepMz

m m
TR H‘ MI ”\Il
n o 04

COMPUTERS Tel 0726881240

Pascal-scm Stepper

1074905 Bad Rappenau Fax 072681912424

The AVRco installation provides a test program „USBtester“ which can be started by the left menu. The the form below is shown:

After selecting a device the working dialog is shown.

[image: image19.png]Stappar Motor

ssvoLr

E-LAB Stepper
Mode StepS4.

b [I

COMPUTERS Tel.07208/0124-0

Copyrgntby 448

roml

G

T T AT
———
I ——

[Satim. 12-cep-2001

574206 526 Rappanay Fax 07255/0124-24

Some transfers can be started.

The source of this Delphi program can be found in the installation directory in
..\AVRco\IDE\USBtester\

3.13.7 [image: image20.png]: z s G
o oo
o ceu os1s voo w
S0 L vec 140 = [.
o sonras 2 o
R S aoteat 155 = i
x ozez 55 R om
foce N o6
o ey DTN 2
2 AR nal
e fouae 2 [
[g
- 5 s -
2o oot e
el [
ST e e
T oo Aret ol et
[
. it
Desom Aibec
T2 e -
xR 5 2
S s B os 3 s e c
veo % e 4 9 9 Sow e
b T fefies moror | 2 3 Er-
< = PBEMISO RXDIPDO. 2 2| 2 B p
v | [EenascaiE &5 B
T i
oo rros
EE
f
v
.
S
o ' 49
Lo bol Lrco

5 —
RS 20 (i |) | Stepper Mini
i my) () | ovinisens
i LT NI
& o ab an OIS | T Copyrgnt by E128

- Jan-t08

574900 Bc Rappenau Fax 072651912424

Support Tools
[image: image21.png]GZEONL Ui dS
owaq Jaddayg

£0/0L ZATY

5
L oar

avra

s I35
& ol

=

9000
ST0a

A Q=]

&
oo

vird

5

s oG

w1

-

1

I

ymEITE)
B oIS

SRE e o
o]
T

A

[

ng.)5
otk s

ER

avoler—

L]
sz

=

=1

ae

I

e o0eo

o awox 5

osied
OSINSEd L0450
ISOWSEd 89411950
Sshad sodial
050/10vE8#0dI00L
ZINIDOVIZABOGISAL
iiad zodniol
SOXILDB 12d¥aS

02aos

ey
SvanNY
SvasNY

VAN
ZvaENy
Lvanny
ovaNY

g
30nv
00

ey 2

Fa11TE}
{377k}
QL
o0
SAL
SoL
Tvao0
So5d]

FET)
8ol

9000
S5

aw

saav
s
aw

o
il

ane

K

VoI
indo

i

D
3w, e

T o I
o1 9IL

STEL
]

2an

HOION 7

dn

v

Inf-Wizard Start

Creating the necessary SYS, INF and DLL files for the Host/PC is an enormous challenge for the developer. For many not doable without the right knowhow and experiences. Therefor AVRco system contains a tool which exactly does this for you!. It will be started in the menu above.

Attention:

The AVR Device must be connected and working properly! Any driver isn’t necessary at this time. Please select only the device you have build! Accidently selecting the wrong device and installing it will result in a failure of this (wrong) device.Maybe it will never work again!!

[image: image22.png]vee

e
"
ceur
o 9058515 vee
e R @ 180 vee |42
vee oL ao0rd [35-
T otoar 2
” o s
i e e
. e
Slrs aouea ot
o i g
i iR AR
L et oo oo [
TsopiTse 1 eoiocn Aar: 2
5 dersa i
o Pt
Hesoro Aizmos 2
I M
ST Aiircs(a
HZSAN e [
) .
£l EBsmios: meoron 113
T TSRS om0 [
Foreoe o [
1
S

1 vee
g
593k
1
FROG GND

RC5TxPort = negative

veovee

cruz
vee simts ano
Bee aolRl o2
R aommal2
2| oo Aira [e
S eoime R
5] 22t oormes [s e
TIPSR O R [2 ve
=l "oy wosiras 12 Jook
aleoi Msomes 2 : i
Hepeice sckrer [
o 2 PROG GND
o
“ﬁ”
e
vee
woe
rasdft
o
crus A
soszets ano
T o
TREE womaal2 stino
2] oo Aies [
Seime R
£ BT ooras |12 o om Ak

PDANTI PBs 1€

D4 MOSIFES

T
oleEm Meereafe
e

xt1 2

coMPUTERS

I

el 07208101240
574806 536 Rappenay Fax 07265/0124-24

Pascal-scm

|; RC5 Test
)

Copyrgntoy 148

Gt 20-rep-2001

Nove = roman

The next step is checking the data and parameters of this device drivers. With „Next“ the driver files are build and stored.

Optionally this driver can directly be installed on the current system. Then this device is ready to operate.

[image: image23.png]s

o
Nain

Netz

1 TR

svoLT

a5y 4007

lsca R
o0 | fiio

D D1

RoT

)

vee

anop—char
:

RESET 1 | mrsgr

PO

ADorPCy
AD1IPCT
‘Ap2Pc2
apapcs [
‘AD4IPC4

PDINTT
EDITO
PoSTI

ADSIPCS

AGND jano

PDBIAND

POTIANT

pessck 12
PEAMISO

RXDIPDO
TXOPDT

PEIMOSI
PESS &
PBIOCT -

oD

PEOICP

2 G

GDGND

AVR Sound

se1

uF spi KER

&b

o

Example

I
[!1'

COMPUTERS Tel 072689120 Copyrat by ELAE

Do

74505 Bad Rappenau Fax 0725t

The Wizard generates several files:

But for the enduser only these are important:

[image: image24.png]e o 5
ovee
Agor
vee et
2 veo 24 [voo B @b
gﬁ S
o -l
T FIS oy (20 meeer su1
& o seEcED 1
B sy P R
s A v rpaper SO
e ey 16 retECT 7O,
e e usy 02
Di s 1i RO 7
Sole e pex S0 E o
0270 7
2 o le o oerE
1 270
ao S i
PR |
90,
0 ool
o a0 —o
JeErECT 1
(3 3
T i
D1 3 s
JERROR =
'} 3
JAUTOFEED
JSToRE T
vee vee

LT
LT

o i - i 12C to Line Printer

(uk H'! il; 12C LPT-Interface
m 'IA W)

i
Copyright by £.148
COMPUTERS Tel. 0726391240
574806 Bad Rappenau Fax 072681512424 [Pam: Z21Ma-2005

2
2

These files and directories must be given to the enduser exactly as they are (directories etc).

If such a device is connected to a Host the first time the PC ask for a suitable driver. The this INF-File must be selected. The rest will be done automatically.

Never give the away the Inf-Wizard. Inexperienced user can destroy or cripple the whole PC system.

3.14 PWMports

3.14.1 PWMport1A 1B 1C PWMport3A 3B 3C PWMport4A 4B 4C PWMport5A 5B 5C
All AVRs contain at least one 16bit timer (Timer1) which supports up to 3 PWM channels. Bigger CPUs often have a second 16bit timer (Timer3) which also can support up to 3 PWM channels. Which timers are available in a specific CPU can be found in the corresponding datasheet. How much PWMs such a timer supports is not very easy to find out. It is best to take a look at the chip pinout of the datasheet. Search for the pin names “OC1A, OC1B, OC1C“ for the timer1. With the timer3 these pins are named “OC3A, OC3B, OC3C“. If such a pin is present the relevant PWM can be imported.

Single channel timers are named without a trailing character (e.g. OC2).

Because such a timer can control up to 3 PWMs its setup (prescaler, resolution) is valid for all of its PWMs.

PWMport4 and 5 only supported in Rev and higher.
Imports

As usual with AVRco the driver must be imported.

The timers to use (Timer1, Timer3 etc) and their PWMports are declared by the imports of the PWMports.

Import SysTick, PWMport1A, ..., PWMport3C, ...;

Defines

The values of the prescaler and the pwm resolutions must be defined.

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

PWMpresc1
= $2;
{prescaler timer1}

PWMres1
= $8;
{resolution timer1}

PWMpresc3
= $4;
{prescaler timer3}

PWMres3
= $10;
{resolution timer3}

PWMres1 (Timer1),
PWMres3 (Timer3)
PWMres4 (Timer4)
PWMres5 (Timer5)
Defines the common resolution for one of the two possible PWMport groups.

With the AVR 8, 9 or 10 Bits are possible.

PWMpresc1 (Timer1)
PWMpresc3 (Timer3)
PWMpresc4 (Timer4)
PWMpresc5 (Timer5)
Defines the common prescaler for one of the two possible PWMport groups. The prescaler controls the repeat rate (frequency) of the PWMs. The values must be within 1..5.

PWMmode1 (Timer1)

PWMmode3 (Timer3)
PWMmode4 (Timer4)
PWMmode5 (Timer5)
Optional defines. Select the standard or fast mode of the timer and the pulse polarity.

PWMport1A, PWMport1B, PWMport1C (Timer1)
PWMport3A, PWMport3B, PWMport3C (Timer3)
The import of PWMPORTxx also imports a variable PWMPORTxx

These variables are always of type Word independent of the selected resolution.

This variable is the only existent interface between the application and the driver.

PWMport1A:= 127;
{50% Duty Cycle at 8bit res}

PWMport3B:= 511;
{50% Duty Cycle at 10bit res}

PWMport4A, PWMport4B, PWMport4C (Timer4)
PWMport5A, PWMport5B, PWMport5C (Timer5)
Timer4 and Timer5 if present. These PWMs are supported with Compiler revision 4.xx and higher.
PWMport4A:= 127;
{50% Duty Cycle at 8bit res}

PWMport5B:= 511;
{50% Duty Cycle at 10bit res}
Note:

Possible existent 8bit PWMs of the 8bit timers are not supported.

The old AVRco PWMport names PWMport1 and PWMport2 are still valid but should not be used with new designs.
3.14.2 PWMport2A, PWMport2B

some newer AVRs have a timer2 that supports upto 2 PWM channels (mega644 / 2560).

If such a timer exists and supports PWM it can also be used and the statements for timer1/timer3

are valid in an analogous way.

Import SysTick, PWMport2A, PWMport2B;

Define

...

PWMpresc2
= $8;
{prescaler timer2}

PWMres2
= $8;
{resolution timer2}

PWMmode2
= fast, negative
{optional define}

...

PWMport2A:= 84;

PWMport2B:= 10;

Software PWM

A software PWM is implemented. There are up to 8 channels possible.
An 8bit timer (Timer0 or Timer2) is used which runs with interrupts. The resolution can be set between 10 and 254 points.

The PWM frequency (cycle time) can be set from 5msec/200Hz to 50msec/20Hz These PWMs are well suited for brightness control of lamps and LEDs, for speed control of DC motors and for temperature control.

Please note that with an 8MHz CPU and 10msec cycle time (100Hz) the update on all 8 channels needs 16usec in the timer interrupt. The repeat rate of the interrupt is 100usec if you select a resolution of 100.

So the SoftPWM need 15% of the CPU performance.

With a resolution of 254 the repeat rate of the timer interrupt is increased to 40usec and the SoftPWM needs 40% of the CPU performance.

More channels need more performance. A greater resolution needs additional CPU performance and shorter PWM cycles also need more CPU performance.

Imports

Import SysTick, SoftPWM;

Defines

Define

 ProcClock
= 8000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0032, iData;

 FrameSize
= $0032, iData;

 SoftPWMport
= PortA;
{use PortA for PWM output}

 SoftPWMchans
= 4, 0;
{4 channels, bit0/PortA is the first}

 //SoftPWMchans
= 4, 2, negative;
{4 channels, bit2/PortA 1.bit, low pulsed}

 SoftPWMtimer
= timer2, 10;
{use timer2, PWM cycle time 10msec = 100Hz}

 SoftPWMres
= 16;
{PWM resolution is 16 points}

SoftPWMport

specifies the output port

SoftPWMchans

specifies the number of PWM channels and the first bit of the port = PWM1 bit.

As an option the output polarity positive/negative can be defined.

SoftPWMtimer

specifies the 8-bit timer (Timer0 or Timer2) and the cycle time in 1mSec steps.

XMega one of the timers (Timer_C0.. Timer_F1) must be specified.

SoftPWMres

specifies the resolution of the PWMs, 10..254.

There are two special functions for this driver:

Procedure SoftPWMstop;

The Timer will be stopped. The PWM pins become idle/inactive.

Procedure SoftPWMstart;

The Timer will be restarted and all PWM values are zeroed.

For controlling the PWM channels some byte memory locations are exported by the system.

These memory location can be read and written.

Var

 SoftPWM0 : byte;

 SoftPWM1 : byte;

 SoftPWM2 : byte;

 SoftPWM3 : byte;

Furthermore it is possible to address the PWMs as an array of byte. The array is defined as:

var

 SoftPWMarr : array[0..maxChan-1] of byte;

 SoftPWM2:= 8;

 SoftPWMarr[1]:= 5;

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\SoftPWM

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_SoftPWM

[image: image25.png]s ics
et raigns
St a0 iHor ailiEie
oz (o) Al 2|02 @25 Bair
0 7|22 A2 71]03 2o eare
o A B
e M e
G ;
o7 21|28 40)]
E] 3151 vee [ovee
% b s
o oo
Fedumn MR
e
o | A2
e A
& s
A e e
srsdisrose
pH N
e B ..
Jesepee Kieno oo veo
=3 i 7,
e s Bimz e[t T J
et pessed . L
e wece® pesso R, oy
L | i P T e e
o NE iiss rorEo|l
| e soemas D7D [T T
olp s A pe Blocs eoummle an
1 [1 P
[Bl oih
5 omf 120me) rosoora 1t
10 A0 eac. 7 2L e
Ep B
ARG raomold
Sliee reim BT
A
Eai "
i Ly PROG Voo
Truomor eeenioa [.
Elobro Feemza 2 Jook
SR 2008
o .

e
| ') | AVR BankPort Exampl
|G| o smocsn
ML
SR st ies Coprgniby A8
COoMPUTERS ol 0720521240 omtim: t1-sep-200t Siai von 1

574206 526 Rappanay Fax 07255/0124-24

Nove = oo

schematic SoftDAC
3.14.3 Software-PWM SoftPWM8 XMega
With the XMegas another software PWM is implemented. Upto 16 channels can be defined.

These channels can be placed onto any port and port-pin. The advantage of this PWMs is an extreme low CPU load and a very short interrupt latency (interrupt disabling time) ~2.5usec total at 32MHz 8 channels.

The disadvantage is the low resolution of 3.5bits. This means 8 values can be set plus complete off. But with many applications this is sufficient.

Imports

Import SysTick, SoftPWM8;

Defines

Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

 // possible OSC types: extXTAL, extClock, ext32kHz, int32Khz, int2MHz, int32MHz

 //>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

 OSCtype =
int32MHz,

PLLmul=4,

prescB=1,

prescC=1;

 SysTick =
10, adj; // msec, correct the RTC32K timer for exact mSec timing

 StackSize =
$80, iData;

 FrameSize = $100, iData;

 // Chan0 Chan1 Chan2 Chan3 Chan4 Chan5 ...

 SoftPWM8chans = PortR.1, PortF.0, PortF.1, PortF.2, PortF.3, PortF.4,

 PortF.5, PortF.6, PortF.7; // 8 channels, mixed ports

 SoftPWM8timer = Timer_D0, 10; // use Timer_D0, PWM cycle time 10msec = 100Hz

SoftPWM8chans

Here upto 16 ports with pins can be defined.

SoftPWM8timer

This defines the necessary XMega timer which is needed for this PWM. The additional parameter defines the cycle time oft he PWMs. (1..100msec)

Exported Functions
procedure SoftPWM8set(chan, pwm : byte);
This procedure sets the desired on-time for the selected channel. The time must be in the range 0..8 .
0 = off, 8 = full on. The channel number starts with 0 and can go upto the defined channel number -1

procedure SoftPWM8start;
Starts all PWM channels. Timer interrupt becomes enabled.
procedure SoftPWM8stop;
Stops all PWM channels. Timer interrupt becomes disabled. The preset channel values are not changed.

procedure SoftPWM8clear;
Alle preset channel values are set to 0. Timer interrupt is not changed.
A sample can be found in the directory ..\E-Lab\AVRco\Demos\XMega_SoftPWM8

3.15 XMega PWM

Each of the XMega 16bit timers provides upto 4 PWM ports which are all supported by this driver.
Because a timer can control upto 4 PWMs so its setup (prescaler, resolution) is common for all its PWMs.

Imports

As usual the driver must be imported into the AVRco.

The timers to be used (TimerC0, TimerC1 etc) and PWMports are defined by the import of a PWMport. In the following context a TT stands for a timer (C0, C1, D0, D1 etc) and C for the channel (A..D).

Import SysTick, PWM_TTC;

Import SysTick, PWM_C0A, PWM_C0B, PWM_C0C, PWM_C0D, PWM_C1A, PWM_C1B;

Defines

Defines the prescaler and the resolution of the PWMs and also the output polarity of the channels.

PWMpresc_TT

Defines the prescaler of the used timer (1..7).
The prescaler defines the repeatrate or frequency of the PWMs.
PWMres_TT
Defines the resolution of a timer (8..16bits).

PWMpol_TTC
defines the output polarity of a PWM channel (positive or negative).

Define

//>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

OSCtype

= int32MHz,

 PLLmul=4,

 prescB=1,

 prescC=1;

StackSize

= $0030, iData;

FrameSize

= $0060, iData;

PWMpresc_C0
= $1;

 // prescaler timerC0

PWMres_C0
= 8;

// pwm resolution timerC0

PWMpol_C0A
= negative;
// output polarity PWM_C0A

3.15.1 Functions and Procedures
Procedure EnablePWM_TTC(ena : boolean);

Starts or stops the PWM channel. If disabled, the output is forced to a zero value.

EnablePWM_C0A(true);
Procedure SetPWM_TTC(pw : byte|word);
Controls the dutycycle of a PWM channel. With a resolution > 8bit a Word is expected, otherwise a Byte.

SetPWM_C0A(123);

Please note that a 100% can not be reached. There will always be a small peak. The timer C0, D0, E0 and F0 provide 4 PWM channels, timer C1, D1, E1 and F1 have 2 channels. So with bigger XMegas there are upto 24 PWMs. Then a SoftPWM is not necessary with the XMegas.
The PWM outputs (pins) are fixed to dedicated port pins and can not be changed.

OCTC output-compare-timer-chan pin
A sample can be found in the directory ..\E-Lab\AVRco\Demos\XMega_PWM

3.16 XMega CRC

If data errors with any kind of transmissions must be recognized then a checksum is mandatory. It must be appended to the transmitted data block. The most secure way is a CRC checksum which must be build with a known polynome over the entire packet. If the receiver got a different checksum then the operation must be repeated or discarded. An error correction doesn’t take place.

There are two CRCs:

CRC16 (CRC-CCITT, Polynom x^16+x^12+x^5+1)
CRC32 (IEEE 802.3, Polynom x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1)
Both of them are supported by hardware of most of the XMegas. Where the CRC32 basically is the most secure.

Imports

As usual the driver must be imported into the AVRco.

Import SysTick, XMega_CRC , ..;

3.16.1 Functions and Procedures
Function CRC16_Block(seed : word; source : pointer; count : word) : word;

Function CRC32_Block(seed : longword; source : pointer; count : word) : longword;

These two functions are similar except of the result, 16 or 32bit.

Seed defines the start value for the CRC operation
Source must point to a memory in the internal SRAM.

Count defines the amount of bytes to be checked.

The checksum is returned as a word or longword.

Streaming

The functions above are working with data blocks. Sometimes it is necessary to work with data streams. For this purpose the functions below are implemented. With StreamInit the CRC is started. Then with StreamAdd bytes are continuously add to the CRC. If the streaming is finished the result can be fetched with StreamGet.

Procedure CRC16_StreamInit(Seed : word);

Starts resp. initialises the CRC stream.

Procedure CRC16_StreamAdd(b : byte);
Always adds one byte tot he CRC.

Function CRC16_StreamGet : word;
Requests the result (CRC) oft he operations above.

The 32bit functions are similar to the 16bit functions above
Function CRC32_StreamInit(seed : longword);

Procedure CRC32_StreamAdd(b : byte);

Function CRC32_StreamGet : longword;

A sample can be found in the directory ..\E-Lab\AVRco\Demos\XMega_CRC

3.17 SPI onBoard Network

Not for XMegas, use the serial SlipPorts instead.

The SPI-Interface of the Atmel AVR family is well suited for the interconnection of several CPUs. The communication between a CPU and special SPI-chips is also possible.

The intention of this implementation is basically the interconnection of CPU to CPU. Simple byte transfers between CPU and SPI-circuits are not implemented, these types can be realized with few assembler statements by the programmer himself. The strategy consists of a Single-Master and Multi-Slave System. For secure communication a frame oriented protocol is implemented.

3.17.1 Mini Network

As quoted above, the single byte transfer on a SPI is not a problem. Difficult and more complex is the link between two or more CPUs. This implementation takes this in account. The implementation is a single master-multi slave system, which consists basically of one master and at minimum one slave CPU.

The master controls all connected slaves. No slave can gain the control of the BUS. All data traffic, regardless of the direction master-slave or slave-master is initiated and controlled by the master.

With this all the common serious problems with collisions, priorities etc. are dropped.

This implementation can be called an “On-Board Network”. You can also call it a “Mickey Mouse” network.

Networks in general are working with telegrams, also called frames. By the usage of frames there is some overhead, but on the other side the security and handability is very improved. To avoid more typical SPI problems, the SPI inherent full duplex transfer is not used. Instead of this the system works with a quasi half-duplex mode. For example, the master requests a frame from a slave. The slave responds with an acknowledge and the master fetches the frame from the slave. On the other way, if the master wants to send a frame to a slave, the master first sends a request, the slave responds also with an acknowledge and then the master sends its frame to the slave.

The request/acknowledge technique can be seen as a polling by the master. The master in principle works without SPI-interrupts, while the slave always uses SPI-interrupts. If the requ-ack handshake is done, all interrupts of the master are disabled and the slave is in its SPI-interrupt-service routine, which is only exited if the frame is completely transferred or its SS-Pin gets inactive. This guarantees that the frame is transferred in the shortest possible time (Master) and no byte is lost (Slave). Byte losses are the main problems with SPI CPU-CPU links, because an interrupt in the slave, while the transfer is in progress at high data rates, leads with certainty to byte losses in the slave. On the other hand, if a slave can’t be interrupted whilst receive/transmit operations, this can’t happen. The disadvantage of this is that all interrupts are disabled as long as a transfer is going on. To avoid to disabling interrupts for a long time, the master must not be disturbed by own interrupts while transferring (e.g. Task-changes) so the frame is transferred with the maximum speed without any delays between the bytes.

The frame lengths can be arbitrary, in the limits of 0..SPIbufferLen -1.

Each slave needs for selection a control line from the master, which is connected to the SS-pin of the slave. Because of this there is no address information in the frame. The application program determines in the master how and/or which port has to build these select lines. The AVRco SPI driver can’t support this function. It’s the job of the master application to activate this control line and select a slave before a communication starts. This control line should be disabled immediately after the transfer is finished.

If a slave has an inactivated SS-input (log. 1) this device disables its SPI logic and tristates its MISO and MOSI lines. Hence it’s possible to connect several slaves to the SPI BUS, provided that not more than one slave has an activated SS-line.

Basics

The SPIport must be imported by an Import instruction, as usual with the AVRco system

Import SPIport;

The operation mode of the SPI peripheral, master or slave must be declared with a Define. A change of this mode at runtime is impossible.

Define SPIport = Master;
or

Define SPIport = Slave;

Master and slave both own a receive- and a transmit-buffer. All slaves should have the same buffer size like the master. The length of this buffers (min1, max 254) and the memory area is determined by this Define:

Define SPIbuffer = nn, iData;

The internal mode of the SPI peripheral must be identical in the master and the slaves and is declared in this manner:

Define
SPIOrder
= MSB;
{LSB}

SPICPOL
= 0;
{0/1}

SPICPHA
= 0;
{0/1}

SPIpresc
= 0;
{0/1/2/3}

If the master is instructed to receive or transmit a frame from/to the slave, it polls the slave for an acknowledge. If the slave is not ready or doesn’t respond in any way, this can lead to total lock-up of the system. To avoid this there must be a retry timeout defined by Define SPIretry. This parameter determines how many times the master sends a poll command until it returns with a Timeout error (SPIrxFrame, SPItxFrame) :

Define SPIretry = 10;

3.17.2 Exported Variables

SpiTxBuff, SpiRxBuff

The length of these buffers are determined by the Define SPIbuffer. The buffers can be treated as an array[1..BuffLen] of byte. By that a read or write access with array indexes is possible.

SPItxBuff[0]:= $56;

X:= SPIrxBuff[6];

With the help of the function SPIout(x) it’s possible to write continuously into the Tx-Buffer. A write pointer is automatically updated. The Rx-Buffer can be read with SPIinp, a read pointer is automatically updated.

for i:= 0 to 5 do
 SPIout ($ff);

endfor;

for i:= 1 to SPIRXLEN do

 bb:= SPIinp;

endfor;

SpiRxLen, SpiTxLen

These two byte variables are only for read purpose! SPIrxLen is updated after the complete reception of a frame with the actual frame length. SPItxLen is written by the command “SPItxFrame(n)” .

3.17.3 Exported Functions and Procedures

Function SpiRxStat : boolean;

This function returns a true if a frame was received and the ReadOut pointer (changed by SpiInp) has not reached the end of the received frame. (SPIrxLen > 0) and (SPIrxOutP < SPIrxLen)

Function SpiInp : byte;
This function reads a byte from the RxBuffer at the position SPIrxBuff[SPIrxOutP] and increments the read pointer (SPIrxOutP). It should only be used in conjunction with SPIrxStat.

Function SpiRxFrame : boolean;

This function has a different meaning with Master and Slave. In case of the Slave it’s identical with “SPIrxStat“.

With Master a true is returned if a frame was received and this frame is not completely read out with SPIinp. See SPIrxStat.

If the RxBuffer is empty or cleared with “SPIrxClear“, the master starts its polling operation and tries to receive a frame from the actual slave. For that the master continuously sends a $FF (max. SPIretry) to the slave. If the slave doesn’t respond the slave’s hardware always echoes the $FF. If the slave has nothing to send it responds with a $00.

If there is a frame to send by the slave, the slave sends a byte > $00 and < $FF.

In the last case the slave has a frame ready to send and this byte is the length byte of the frame which follows. The master now receives this count of bytes from slave, stores them into the RxBuffer, resets the read pointer and stores the frame length into SPIrxLen. The function then returns with a true. If the master reaches the Retry Timeout with its polling, the function returns a false.

While receiving the frame from slave the master must send always a byte, so that the slave also can send a byte. These bytes from master are ignored by the slave, because they are only dummies. Throughout the whole operation the slave stays in its interrupt service routine. It exits only if all bytes are transferred or its SS-pin gets inactive.

Function SpiRxClear : boolean;

The read and write pointers and the Framelength byte of the RxBuffer are cleared. The contents of the buffer itself is not changed. If the state of the frame was “empty“ a false is returned, otherwise a true.

Function SpiOnLine : boolean;

The Master transmits a $00-request to the activated Slave (SS-pin active!). The Slave responds with a $00. The Master can find out whether the selected Slave is online, that means it is ready to receive or send data. The result is true, if the Slave is active, otherwise it’s false. The result has no meaning about the Slave’s internal state e.g. Frame ready to send.

Neither in the Slave nor in the Master a Buffer or state will be changed.

Function SpiTxStat : boolean;
This function checks whether a frame to send is sent or not. If the frame is sent, the function returns with a true, otherwise with a false.

Function SpiOut (const b : byte) : boolean;

This function stores a byte into the TxBuffer at the location SPIrxBuff[SPItxInP] and increments the write pointer (SPItxInP). The store is only done if the TxBuffer is ready, that means a previous send operation with “SPItxFrame“ has returned successfully. Furthermore in the TxBuffer there must be place for an additional byte (SPItxInp < BufferLen). After a successful byte store a true is returned, otherwise a false.

Function SpiTxFrame (const len : byte) : boolean;

This function has a different meaning with Master and Slave.

With the Slave it checks whether the last frame was transmitted successfully. If not, the function returns a false. If the last frame was sent, the “len“ parameter is stored into “SPItxLen“. The result of the function is then true.

If the master now requests a frame, the slave checks its SPI-interrupt-service parameter SPItxLen. The slave sends this byte as an acknowledge to the master. If this byte is $00, the slave exits the interrupt, because there is nothing to send. Otherwise the slave waits for the dummy bytes from the master and responds for each master byte with a new byte from its TxBuffer. If the frame is sent completely the slave clears its SPItxLen to zero and exits the interrupt service. If the SS-pin goes inactive while transmitting the slave exits its interrupt service and resets its Tx state to an unsent but ready to send frame.

In case of Master mode the function checks whether the last frame was sent successfully. If not, the function returns a false. A possible reason was a TimeOut during the previous SPItxFrame. With SPItxClear the frame can be reset without destroying the frame itself and SPItxFrame can be invoked again. If the frame was sent successfully, the “len“ parameter is stored in “SPItxLen“.

In order to send a frame the master polls the active slave with $00, until the TimeOut is reached (SPIretry) or the slave responds with a byte > $00 and < $FF. This byte is the max. possible frame length that the slave can accept. No further analysis of this byte takes place. The assumption is that the master and all slaves have the same buffer lengths.

In case of a timeout (SPIretry) the function returns with a false.

If the slave has responded with an acknowledge, the master first transmits the frame length (SPItxLen) and then the remaining bytes from the TxBuffer. The echo of the slave will be ignored, because the slave is in its interrupt service routine and leaves it only when the correct count of bytes is transferred or its SS-pin goes inactive.

Procedure SpiTxClear;

The read and write pointers and the Framelength byte of the TxBuffer are cleared. The contents of the buffer itself are not changed. If the state of the frame was “empty“ a false is returned, otherwise a true is returned.

Remarks

The Slave continuously looks at the SS-pin while a transfer is processed. If the SS-pin becomes inactive the Slave aborts the action. If a frame reception was occurring, the received frame is invalid. If the Slave is sending a frame the action is aborted and the frame length is reset to the original length. This means that the current frame is unsent and a new transmit is possible.

The used pins MISO, MOSI, SCLK of the Master and each SS-Pin of the slaves should be connected to a weak pullup resistor, typ. 10k. If the electrical connection fails, at least the “SPIonLine” function then will return a false.

[image: image26.png]oponn
crage >
it
e aan
oz caserz
2 o8 cimeal=
e o A
P = B =
P E
-t o)
M oD o5 1o 2 A
8% Ed
P Sl &
s 83
i B
2l mae I
=3 2
ao we R | verra
il e
a2 .
A voo [pvaar | mAZ o
Ll RO 2] WE c
A0 1000n PP .
USER MEMORY =
(optional) vee S
: e o vee
16 Banks & 32kB T S
v s
RAM DISK 512KB ey o
eI S,
B mmr
Aoirs o Z R
o SR =
ocie ool Y
520 AR
foreo UMM
Asror eosiocis UL
Aoms "% I pank: 5
vee vee ATIECE o Fe
ARG eeomo 8 A=
AT g4 AIIRCS | PBUTH a7
- hea L — 7 e g i
c1 o = 2 A1SPCT PBAINT
iz et [Jioc AN 2 ,
Tow wpgd 1 om0 eesmon 1 Froe veo
T wlrm = maroo Feamzo & tloolz
o I B T8 TR Ep
n R i
e R oo =
3 2 eser ot
712 B e comant
o 3
L
En
.
i I AVR RAM Disk
i il for CPM Fisystem
TR

coMPUTERS

el 07208191240

574900 526 Rappenay Fax 072631312424

Copyright oy £:48

Dsfur: s-dul-1500

Fave, R torer

schematic SPI

3.18 SPI Low Level SPIdriver, SPI_C…SPI_F Hardware Version
In addition to the Mini-Network SPIport the AVRco system also supports direct data transfers through the SPI interface of the AVRs in Master Mode. This driver provides the low-level functions for reading and writing of datablocks with the SPI in Master Mode. Also runtime changes of the SPI modes are supported.

The setup of the SPI is achieved by the import of the driver and the associated defines. There are three different data transfer functions. The mandatory chip select for the slave is handled within the driver. As usual the PortBit SS of the SPI port is used. It is possible for the application to assert additional chip selects before calling the input and output functions and then deactivate them after a function returns.

The source and destination of the transferred data blocks must always reside in RAM. EEprom or Flash can not be used.

Imports

As usual with AVRco the driver must be imported.

Import SysTick, SPIdriver, ..;

XMega

Import SysTick, SPI_C, ..; // SPI_D, SPI_E, SPI_F

Defines

The Bitrate, ClockPhase, ClockPolarity and MSB/LSB must first be set with the Define, depending on the requirements of the SPI slave.

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

SPIorder
= MSB;

SPIcpol
= 1;

SPIcpha
= 1;

SPIpresc
= 1[, double];
 // presc = 0..3 -> 4/16/64/128. Double = optional

SPI_SS
= false;
 // don’t use SS pin as chipselect, not for XMega
Alternative to the SPIcpol and SPIcpha the desired mode can also be defined in a more general way:

Define
SPImode = 0;
// 0, 1, 2, 3

XMega

Define OSCtype = int32MHz, PLLmul=4, prescB=1, prescC=1; // all 32MHz

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

SPIorderC
= MSB;

SPImodeC
= 0;
// Clock Phase and Polarity

SPIprescC
= 1;
 // presc = 0..3 -> 4/16/64/128

SPI_SSC
= PortB, 3;
// use this pin as SS chipselect

 //
SPI_SSC
= none;
// application generates the SS chipselect

With the XMegas there are upto 4 separate SPI ports. Each of them is included into an I/O Port.
PortC, PortD, PortE, PortF. Because of this these SPIs are named SPI_C, SPI_D, SPI_E and SPI_F.
Please also note the switch {$REUTILIZE xxx} in the Compiler Manual.

Attention:

Basically the standard SS-pin must be programmed as an output with all AVRs and XMegas.

The system does this. If this pin is not used as the SS, so it can be used as a normal output pin.

Functions

These SPI Defines can be changed at runtime:

Procedure SetSPIorder (msb : boolean);

Procedure SetSPIclkPol (pol : byte);
// pol = 0/1

Procedure SetSPIclkPha (phase : byte);
// phase = 0/1

Procedure SetSPIpresc (presc : byte);
// presc = 0..3 -> 4/16/64/128

Procedure SetSPImode(mode : byte); // mode = 0..3

XMega

Procedure SetSPIorderC(msb : boolean);

Procedure SetSPIorderD(msb : boolean);

Procedure SetSPIorderE(msb : boolean);

Procedure SetSPIorderF(msb : boolean);

Procedure SetSPIclkPolC(pol : byte);
// pol = 0/1

Procedure SetSPIclkPolD(pol : byte);
// pol = 0/1

Procedure SetSPIclkPolE(pol : byte);
// pol = 0/1

Procedure SetSPIclkPolF(pol : byte);
// pol = 0/1

Procedure SetSPIclkPhaC(phase : byte);
// phase = 0/1

Procedure SetSPIclkPhaD(phase : byte);
// phase = 0/1

Procedure SetSPIclkPhaE(phase : byte);
// phase = 0/1

Procedure SetSPIclkPhaF(phase : byte);
// phase = 0/1

Procedure SetSPIprescC(presc : byte);
// presc = 0..3 -> 4/16/64/128

Procedure SetSPIprescD(presc : byte);
// presc = 0..3 -> 4/16/64/128

Procedure SetSPIprescE(presc : byte);
// presc = 0..3 -> 4/16/64/128

Procedure SetSPIprescF(presc : byte);
// presc = 0..3 -> 4/16/64/128

Procedure SetSPImodeC(mode : byte);
 // mode = 0..3

Procedure SetSPImodeD(mode : byte);
 // mode = 0..3

Procedure SetSPImodeE(mode : byte);
 // mode = 0..3

Procedure SetSPImodeF(mode : byte);
 // mode = 0..3

Procedure SPIout (source : pointer; count : word);

XMega

Procedure SPIoutC(source : pointer; count : word);
Procedure SPIoutD(source : pointer; count : word);
Procedure SPIoutE(source : pointer; count : word);
Procedure SPIoutF(source : pointer; count : word);
Writes a datablock from the RAM address source with the length count into the SPI-Slave.

SPIout (@ArrXY, sizeOf (ArrXY));

Procedure SPIinp (dest : pointer; count : word);

XMega

Procedure SPIinpC(dest : pointer; count : word);

Procedure SPIinpD(dest : pointer; count : word);

Procedure SPIinpE(dest : pointer; count : word);

Procedure SPIinpF(dest : pointer; count : word);

Reads a datablock out of the SPI-Slave into the memory location dest with the length count

SPIinp(@ArrXY, sizeOf (ArrXY));

XMega

SPIinpC(@ArrXY, sizeOf (ArrXY));
Procedure SPIinOut(source, dest : pointer; count : word);

XMega

Procedure SPIinOutC(source, dest : pointer; count : word);

Procedure SPIinOutD(source, dest : pointer; count : word);

Procedure SPIinOutE(source, dest : pointer; count : word);

Procedure SPIinOutF(source, dest : pointer; count : word);

Writes a datablock from the RAM address source with the length count into the SPI-Slave and reads a

datablock out of the SPI-Slave into the memory location dest with the length count
SPIinOut(@ArrXY, @RecordAB, 24);

XMega

SPIinOutC(@ArrXY, @RecordAB, 24);

Procedure SPIoutByte(b : byte);

XMega

Procedure SPIoutByteC(b : byte);

Procedure SPIoutByteD(b : byte);

Procedure SPIoutByteE(b : byte);

Procedure SPIoutByteF(b : byte);

Writes a byte into the SPI-Slave.

SPIoutByte ($32);

XMega

SPIoutByteC($40);
Procedure SPIoutWord(w : word);

XMega

Procedure SPIoutWordC(w : word);

Procedure SPIoutWordD(w : word);

Procedure SPIoutWordE(w : word);

Procedure SPIoutWordF(w : word);

Writes a word into the SPI-Slave.

SPIoutWord ($4080);

XMega

SPIoutWordC($4080);
Procedure SPIoutLong(L : LongWord);

XMega

Procedure SPIoutLongC(L : LongWord);

Procedure SPIoutLongD(L : LongWord);

Procedure SPIoutLongE(L : LongWord);

Procedure SPIoutLongF(L : LongWord);

Writes a Longword into the SPI-Slave.

SPIoutLong($12345678);

XMega

SPIoutLongC($12345678);

Function SPIinpByte : byte;

XMega

Function SPIinpByteC : byte;

Function SPIinpByteD : byte;

Function SPIinpByteE : byte;

Function SPIinpByteF : byte;

Reads a byte out of the SPI-Slave.

bb:= SPIinpByte;

XMega

bb:= SPIinpByteC;
Function SPIinpWord : word;

XMega

Function SPIinpWordC : word;

Function SPIinpWordD : word;

Function SPIinpWordE : word;

Function SPIinpWordF : word;

Reads a word out of the SPI-Slave.

ww:= SPIinpWord;

XMega

ww:= SPIinpWordC;
Function SPIinpLong : longword;
XMega

Function SPIinpLongC : longword;
Function SPIinpLongD : longword;
Function SPIinpLongE : longword;
Function SPIinpLongF : longword;
Reads a longword out of the SPI-Slave.

Lw:= SPIinpLong;

XMega

Lw:= SPIinpLongC;
Function SPIinOutByte(b : byte) : byte;
XMega

Function SPIinOutByteC(b : byte) : byte;
Function SPIinOutByteD(b : byte) : byte;
Function SPIinOutByteE(b : byte) : byte;
Function SPIinOutByteF(b : byte) : byte;
Writes a byte into the SPI-Slave and reads a byte out of the SPI-Slave.

bb:= SPIinOutByte ($24);

XMega

bb:= SPIinOutByteC($33);
Procedure SetSPIdoubleSpeed(ds : boolean);

XMega

Procedure SetSPIdoubleSpeedC(ds : boolean);

Procedure SetSPIdoubleSpeedD(ds : boolean);

Procedure SetSPIdoubleSpeedE(ds : boolean);

Procedure SetSPIdoubleSpeedF(ds : boolean);

Switches the SPI bit rate between double and standard.

SetSPIdoubleSpeed (true); // switch to double speed

XMega

SetSPIdoubleSpeedC(true); // switch to double speed
XMega only
Function SPIinpLong64C : longword;
Function SPIinpLong64D : longword;
Function SPIinpLong64E : longword;
Function SPIinpLong64F : longword;
Reads a 64bit word out of the SPI-Slave.

W64:= SPIinpLong64C;
Procedure SPIoutLong64C(L : Word64);

Procedure SPIoutLong64D(L : Word64);

Procedure SPIoutLong64E(L : Word64);

Procedure SPIoutLong64F(L : Word64);

Writes a 64bit word into the SPI-Slave.

SPIoutLong64($123456780ABCD);

The SPI-SS pin is default used as the chipselect for the slave. With the SPI_SS Define this can be disabled. Then the application must handle the chipselects itself.

MSPI Low Level SPI driver MSPI_0..MSPI_3 AVR
Not for XMegas!

Some AVR types provide the SPI Master operation of their UARTs. Which types support this can be found in the data sheets in „USART in SPI Mode“. They call it the MSPIM mode.

In addition to the standard hardware SPI the AVRco system also supports direct data transfers through the USART-SPI interface of the AVRs in Master Mode. This driver provides the low-level functions for reading and writing of datablocks with the USART-SPI in Master Mode. Also runtime changes of the SPI modes are supported. The drivers are called MSPI_0, MSPI_1, MSPI_2 etc. dependend of the USART used.

Because there can be upto 4 USARTS in an AVR and all, if implemented, can be switched into the MSPIM mode the System supports upto 4 MSPI drivers which are identical but distinguished by an appended number 0..3. For example MSP0, MSP1 or MSPIout0 or MSPIout1 etc. In the following context the possible indexes 0..3 are replaced by a n.
The setup of the SPI is achieved by the import of the driver and the associated defines. There are three different data transfer functions. The mandatory chip select for the slave must be handled by the application which must assert a chip select before calling the input and output functions and then deactivate them after a function returns.

The TxDn pin becomes MOSIn, the RXDn pin becomes MISOn and the XCKn pin becomes SCKn.

The source and destination of the transferred data blocks must always reside in RAM. EEprom or Flash can not be used.

Imports

As usual with AVRco the driver must be imported.

Import SysTick, MSPI_0, MSPI_1, ..;

Defines

The Bitrate, ClockPhase, ClockPolarity and MSB/LSB must first be set with the Define, depending on the requirements of the SPI slave. They can be changed at runtime.

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

MSPIorder0
= MSB;

MSPIcpol0
= 1;

MSPIcpha0
= 1;

MSPIpresc0
= 1;
 // presc = 0..255

MSPIorder1
= MSB;

MSPIcpol1
= 1;

MSPIcpha1
= 1;

MSPIpresc1
= 1;
 // presc = 0..255

….

Alternative to the MSPIcpolx and MSPIcphax the desired mode can also be defined in a more general way:

Define
MSPImode0 = 0;
// 0, 1, 2, 3

 Functions

These MSPI Defines can be changed at runtime:

Procedure MSetSPIordern (msb : boolean);

Procedure MSetSPIclkPoln (pol : byte); // pol = 0/1

Procedure MSetSPIclkPhan (phase : byte); // phase = 0/1

Procedure MSetSPIprescn (presc : byte); // presc = 0..255

Procedure SetMSPI0mode(mode : byte); // mode = 0..3

Procedure SetMSPI1mode(mode : byte); // mode = 0..3

Procedure SetMSPI2mode(mode : byte); // mode = 0..3

Procedure SetMSPI3mode(mode : byte); // mode = 0..3

Procedure MSPIoutn (source : pointer; count : word);

Writes a datablock from the RAM address source with the length count into the MSPI-Slave.

MSPIout0 (@ArrXY, sizeOf (ArrXY));

Procedure MSPIinpn (dest : pointer; count : word);

Reads a datablock out of the MSPI-Slave into the memory location dest with the length count

MSPIinp1 (@ArrXY, sizeOf (ArrXY));

Procedure MSPIinOutn (source, dest : pointer; count : word);

Writes a datablock from the RAM address source with the length count into the MSPI-Slave and reads a

datablock out of the MSPI-Slave into the memory location dest with the length count
MSPIinOut2 (@ArrXY, @RecordAB, 24);

Procedure MSPIoutByten (b : byte);

Writes a byte into the MSPI-Slave.

MSPIoutByte3 ($32);

Procedure MSPIoutWordn (w : word);

Writes a word into the MSPI-Slave.

MSPIoutWord0 ($4080);

Procedure MSPIoutLongn (L : LongWord);

Writes a Longword into the MSPI-Slave.

MSPIoutLong1 ($12345678);

Function MSPIinpByten : byte;

Reads a byte out of the MSPI-Slave.

bb:= MSPIinpByte1;

Function MSPIinpWordn : word;

Reads a word out of the MSPI-Slave.

ww:= MSPIinpWord2;

Function MSPIinpLongn : LongWord;

Reads a longword out of the MSPI-Slave.

Lw:= MSPIinpLong3;

Function MSPIinOutByten (b : byte) : byte;

Writes a byte into the MSPI-Slave and reads a byte out of the MSPI-Slave.

bb:= MSPIinOutByte0 ($24);

3.19 MSPI Low Level SPI driver MSPI_C0..MSPI_F1 XMega
For XMegas only!

All XMega types provide the SPI Master operation of their UARTs. This can be found in the data sheets in „USART in SPI Mode“. They call it the MSPIM mode.

In addition to the standard hardware SPI the AVRco system also supports direct data transfers through the USART-SPI interface of the XMegas in Master Mode. This driver provides the low-level functions for reading and writing of datablocks with the USART-SPI in Master Mode. Also runtime changes of the SPI modes are supported. The drivers are called MSPI_C0, MSPI_C1, MSPI_D0 etc. dependend of the USART used. The suffix C0 etc. is renamed to xx for simplicity. MSPI_xx
All XMegas support the MSPIM mode with their USARTs. So there there can be upto 8 USARTS in a XMega and all, if implemented, can be switched into the MSPIM mode. The System supports upto 8 MSPI drivers which are identical but distinguished by an appended suffix C0..F1. For example MSP_C0, MSP_C1 or MSPIout_C0 or MSPIout_C1 etc. In the following context the possible suffixes are replaced by a xx.
The setup of the SPI is achieved by the import of the driver and the associated defines. The mandatory chip select for the slave is handled by the driver itself. So the application which must define a chip select port and pin.
The TxDxx pin becomes MOSIxx, the RXDxx pin becomes MISOxx and the XCKxx pin becomes SCKxx.

The source and destination of the transferred data blocks must always reside in RAM. EEprom or Flash can not be used. For block transfers DMA channels can be used.
Imports

As usual with AVRco the driver must be imported.

Import SysTick, MSPI_C0, MSPI_C1, ..;

Defines

The Bitrate, SPImode (ClockPhase, ClockPolarity) and MSB/LSB must first be set with the Define, depending on the requirements of the SPI slave. They can be changed at runtime. The desired pin and port for the /CS (SS) must be defined. If “none” is given then the application must handle the SS by itself.
Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

 //>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

OSCtype
= int32MHz,

 PLLmul=4,

 prescB=1,

 prescC=1;

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

MSPIorder_C0
= MSB;

MSPIMode_C0
= 1;
 // 0, 1, 2, 3

MSPIpresc_C0
= 1;
 // presc = 0..255

MSPI_SS_C0
= PortE, 4;

MSPIorder_C1
= MSB;

MSPImode_C1
= 0;
 // 0, 1, 2, 3

MSPIpresc_C1
= 3;
 // presc = 0..255

MSPI_SS_C1
= none;

Optional

MSPIDMA_OUT_C1 = DMAch0; // DMAch0 for BlockOut functions

….
3.19.1 Functions

These MSPI Defines can be changed at runtime:

Procedure SetMSPIorder_xx(msb : boolean);

Procedure SetMSPIclkPol_xx(pol : byte); // pol = 0/1

Procedure SetMSPIclkPha_xx(phase : byte); // phase = 0/1

Procedure SetMSPIpresc_xx(presc : byte); // presc = 0..255
Procedure SetMSPImode_xx(mode : byte); // mode = 0..3

DMA:
With OutBlock functions one of the 4 possible DMA channels can be used.
With InpBlock functions one of the 2 possible DMA pairs (0+1 or 2+3) can be used.

The used DMA must be defined in the Define section.

Define MSPIDMA_OUT_ xx = DMAch0; DMAch0 for Block Out functions
Define MSPIDMA_INP_ xx = DMAch2; DMAch2+3 for Block Inp functions
Procedure MSPIout_xx (source : pointer; count : word); // DMA can be used
Writes a datablock from the RAM address source with the length count into the MSPI-Slave.

MSPIout_C0(@ArrXY, sizeOf (ArrXY));

Procedure MSPIinp_xx (dest : pointer; count : word); // DMA can be used
Reads a datablock out of the MSPI-Slave into the memory location dest with the length count

MSPIinp_C1(@ArrXY, sizeOf (ArrXY));

Procedure MSPIinOut_xx(source, dest : pointer; count : word); // no DMA possible
Writes a datablock from the RAM address source with the length count into the MSPI-Slave and reads a

datablock out of the MSPI-Slave into the memory location dest with the length count
MSPIinOut_D0(@ArrXY, @RecordAB, 24);

Procedure MSPIoutByte_xx(b : byte);

Writes a byte into the MSPI-Slave.

MSPIoutByte_D1($32);

Procedure MSPIoutWord_xx(w : word);

Writes a word into the MSPI-Slave.

MSPIoutWord_E0($4080);

Procedure MSPIoutLong_xx(L : LongWord);

Writes a Longword into the MSPI-Slave.

MSPIoutLong_E1($12345678);

Function MSPIinpByte_xx : byte;

Reads a byte out of the MSPI-Slave.

bb:= MSPIinpByte_E1;

Function MSPIinpWord_xx : word;

Reads a word out of the MSPI-Slave.

ww:= MSPIinpWord_F0;

Function MSPIinpLong_xx : LongWord;

Reads a longword out of the MSPI-Slave.

Lw:= MSPIinpLong_F1;

Function MSPIinOutByte_xx(b : byte) : byte;

Writes a byte into the MSPI-Slave and reads a byte out of the MSPI-Slave.

bb:= MSPIinOutByte_E1($24);
DMA:

A DMA transfer can only be used with block transfer functions.

If a DMAout channel is defined
Define MSPIDMA_OUT_ xx = DMAchX
So the DMA is only used for the function

 Procedure MSPIout_xx(..)
If a DMAinp channel is defined
Define MSPIDMA_INP_ xx = DMAchX
So the DMA is only used for the function

 Procedure MSPIinp_xx(…);
Both functions return only if the complete transfer is done. This waiting can be disabled by calling a separate (optional) busy function:

Function MSPI_DMAready_xx : boolean;
This function returns with a false as long as the transfer is running. If the transfer has finished then a true is returned.

Attention:

Because the DMA uses the same address and databus as the CPU the DMA transfer is slowed down.

The transfer time of the DMA is 3 times longer as without DMA!

Example programs:

Two examples are in the directories ..\E-Lab\AVRco\Demos\XMega_MSPI

 and ..\E-Lab\AVRco\Demos\XMega_MSPI_DMA

3.20 SPI Low Level SPIdriver1/2 Software Version
In addition to the direct SPIdriver that uses the SPI port of the AVR the system also supports two pure software SPI interfaces in Master Mode. This driver provides the low-level functions for reading and writing of datablocks via the software interfaces in Master Mode.

The setup of the SPI is achieved by the import of the driver and the associated defines. There are three different functions. The mandatory chip select for the slave is as usual handled within the driver.

The source and destination of the transferred data blocks must always reside in RAM. EEprom or Flash can not be used.

Imports

As usual with AVRco the driver must be imported.

Import SysTick, SPIdriver1, ..;

//or SPIdriver2 or both

Defines

The ClockPhase, ClockPolarity and MSB/LSB first must be set with the Define, dependant of the requirements of the SPI slave.

Define

ProcClock
= 16000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0030, iData;

 FrameSize = $0040, iData;

 SPIdriver1
= PortA, 0, 1, 2, 3;
// SCK, MOSI, MISO, SS

 SPIorder1
= MSB;

 SPIcpol1
= 1;

 SPIcpha1
= 1;

Alternative to the SPIcpolx and SPIcphax the desired mode can also be defined in a more general way:

Define
SPImode1 = 0;
// 0, 1, 2, 3

 SPIdriver2
= PortC, 7, 4, 1, 5;
// SCK, MOSI, MISO, SS

 SPIorder2
= MSB;

 SPIcpol2
= 0;

 SPIcpha2
= 0;

SPIdriverX selects the bit functions of the used IO-port. First is the port name. Next are the positions of the clock pin, the MOSI and the MISO pins, and finally the position of the SS-pin (chip select). The latter is optional.

All pins or bits must be in one port. Splitting in not possible but you can use any bits of the port at any position.

The function of the SPIcpol (SPI Clock Polarity) and SPIcpha (SPI Clock Phase) or the SPI modes is explained in the AVR datasheets.

The definition of the SS pin (chip select) can also be omitted. Then the driver generates no chip selects and this becomes the job of the application. If the SS pin is defined, the driver activates the SS pin before an access to the slave and deactivates it after the access.

The SPI transfer rate is not selectable. It is about 1/16 of the processor clock. So with 16MHz the bitrate is about 1Mbit/sec.

3.20.1 Functions

These SPI Defines can not be changed at runtime:

Procedure SPIout1 (source : pointer; count : word);

Procedure SPIout2 (source : pointer; count : word);

Writes a datablock from source with the length count into the SPI-Slave.

SPIout1 (@ArrXY, sizeOf (ArrXY));

Procedure SPIinp1 (dest : pointer; count : word);

Procedure SPIinp2 (dest : pointer; count : word);

Reads a datablock out of the SPI-Slave into the memory location dest with the length count

SPIinp2 (@ArrXY, sizeOf (ArrXY));

Procedure SPIinOut1 (source, dest : pointer; count : word);

Procedure SPIinOut2 (source, dest : pointer; count : word);

Writes a datablock from source with the length count into the SPI-Slave and reads a datablock out of the

SPI-Slave into the memory location dest with the length count

SPIinOut1 (@ArrXY, @RecordAB, 24);

Procedure SPIoutByte1 (b : byte);

Procedure SPIoutByte2 (b : byte);

Writes a byte into the SPI-Slave.

SPIoutByte2 ($40);

Procedure SPIoutWord1 (w : word);

Procedure SPIoutWord2 (w : word);

Writes a word into the SPI-Slave.

SPIoutWord1 ($4080);

Procedure SPIoutLong1 (L : longword);

Procedure SPIoutLong2 (L : longword);

Writes a longword into the SPI-Slave.

SPIoutLong2 ($12345678);

Function SPIinpByte1 : byte;

Function SPIinpByte2 : byte;

Reads a byte out of the SPI-Slave.

bb:= SPIinpByte1;

Function SPIinpWord1 : word;

Function SPIinpWord2 : word;

Reads a word out of the SPI-Slave.

ww:= SPIinpWord2;

Function SPIinpLong1 : longword;

Function SPIinpLong1 : longword;

Reads a longword out of the SPI-Slave.

Lw:= SPIinpLong1;

Function SPIinOutByte1 (b : byte) : byte;

Function SPIinOutByte2 (b : byte) : byte;

Writes a byte into the SPI-Slave and reads simultaneously a byte out of the SPI-Slave.

bb:= SPIinOutByte2 ($33);

Single-Bit Output:

Procedure SPIoutBit1(b : boolean);

Procedure SPIoutBit2(b : boolean);

Writes one bit into a Slave. Can be used for a 9bit output..

Example in XMega_SoftSPI
3.21 Serial SPI Flash AT25DF (XMega)

Some applications need a huge amount of constant data, for example the EVE graphic system where big bitmaps and huge fonts are used. Also HTML pages can have very much kBs to send. Store and restore large amounts of data in a very cheap SPI driven serial Flash device is a solution for these requirements.
The device supported here is the AT25DF321 32MBit = 4MByte and the AT25DF641 64Mbit = 8MByte device. Both devices are identical 8pin SOIC chips. Optional 2 ROMs can be controlled. As all flash devices the read operations are always random and high speed. Single bytes and blocks upto 64kBytes can be read with one access with 50Mbit/sec speed. The XMega used here is limited to 16MBit/sec.
The drawback with flash devices is that non-empty blocks must be erased before they can be written. So the main purpose of such devices is mostly limited to a read-only device. The contents of the flash is written once and read often.
Import

As usual with AVRco the driver must be imported.
Import SysTick, AT25DFxx, ..;

Define

The driver needs the define of a Hardware or Software SPI:

Define

 AT25DFxx = SPI_E, PortE.3; // hardware SPI, /CS
or Software SPI

 // SS SCLK MOSI MISO

 AT25DFxx = SPI_Soft, PortE.3, PortE.7, PortE.5, PortE.6;

 AT25DF_ROM2 = PortE.2; // optional 2nd chip select
Low Level Functions
These functions are normally not used by the application. They serve for very specific purposes.
procedure AT25_CS_Hi;

The SPI-chipselect output is set to log1 (inactive).

procedure AT25_CS_Lo;

The SPI-chipselect output is set to log0 (active).

procedure AT25_outByte(b : byte);
The byte b is send by the SPI-MOSI output.

function AT25_inpByte : byte;

This function reads one byte through the SPI-MISO input.

procedure AT25_outAddr(a : longword);
The Flash address is written into the AT25.
procedure AT25_write_enable;
The write-enable in the AT25 becomes activated.

procedure AT25_write_disable;
The write-enable in the AT25 becomes deactivated.
Support Functions
procedure AT25_SelectROM(rom : byte);

If the optional 2nd ROM is defined, so the actual desired ROM must be given here.

procedure AT25_checkBusy;
The busy flag in the AT25 is checked until it becomes inactive.

procedure AT25_Reset;

This function aborts all running operations in the AT25 (write, erase etc).

function AT25_readStatus : word;

The status register of the AT25 is read out. Find further infos in the AT25 datasheet.

procedure AT25_protect_sector(sect : longword);
A 64kb flash sector in the AT25 becomes write- and erase protected. “sect“ must address a 64kB sized area. Supplying the start address of this block is not necessary.

procedure AT25_unprotect_sector(sect : longword);
A 64kb flash sector in the AT25 becomes unprotected for write- and erase operations. “sect“ must address a 64kB sized area. Supplying the start address of this block is not necessary.
procedure AT25_protect_all;

The entire flash in the AT25 becomes write- and erase protected.

procedure AT25_unprotect_all;

The entire flash in the AT25 becomes write- and erase protected.
function AT25_ GetDeviceDensity : byte;

This function returns the flash size of the AT25 in Mbits. 32..64

Main Functions
procedure AT25_chip_erase;

This function executes a complete chip-erase. This means that all flash cells are set to $FF. This can last upto 25sec.

procedure AT25_4kb_erase(addr : longword);

A 4kByte block in the flash becomes erased. “addr“ must point into the desired block.

procedure AT25_32kb_erase(addr : longword);

A 32kByte block in the flash becomes erased. “addr“ must point into the desired block.

procedure AT25_64kb_erase(addr : longword);

A 64kByte block in the flash becomes erased. “addr“ must point into the desired block.

procedure AT25_read_array(addr : longword; buf : pointer; count : word);

This function reads an upto 64kB sized flash content out of the AT25. “addr“ defines an arbitrary start address. “buf“ is a pointer into the iData (dest) where the readout must be written. “count“ is the amount of bytes to read.

procedure AT25_write_page(addr : longword; buf : pointer);

This function writes a 256 byte sized area out of iData into the AT25. “addr“ is the destination address in the flash and must point to the start of a 256byte block in the AT25 (a multiple of 256).

procedure AT25_write_bytes(addr : longword; buf : pointer; count : byte);
This function writes an upto 256 byte sized area out of iData into the AT25. “addr“ is the destination address in the flash. The maximal byte count is 256. If “count“ = 256 then “addr“ must point to the begin of a 256byte block in the flash. If “count“ = 1 then “addr“ can point to any location in the concerned 256byte block. “buf“ points to the source in the iData area.

As with all flash write operations it must be sure that these memory locations which will be written must contain ($FF). This can be done with a chip-Erase or a block-erase. If some bytes must be patched the in a block which already contains data, then the involved 4kB block must be readout. Then this contents are patched in the iData. Then this 4kB block must be erased in the AT25 and now the patched block can be rewritten into the AT25.

Example Program:
A sample is in the directory ..\E-Lab\AVRco\Demos\XMega_SerFlash

A second sample is in the directory ..\E-Lab\AVRco\Demos\XMega_SerFlash2
3.22 TWI (I2C) Drivers Master and Slave

The I2C (TWI) interface is an international standardized, synchronous serial interface for the connection of peripheral modules to a processor as well as for the communication of processors. This implementation supports both the Master and Slave mode. With both modes the AVR must have a TWI module on chip, like the mega16.

Several slaves can be connected to a TWI master, where every slave has a special internal address, which should be unique within the so-called net. Theoretically more than 100 modules can be accessed, so you could talk about a network. The variant with 10-bit addresses is not supported.

The connection between each unit is made by two control lines: Data and Clock. These two lines are bi-directional. Each of the two lines must have external pull-up resistors of 1..10kOhm to +5Volt.

Slave Addresses

With slave addresses there is an important characteristic that one must bear in mind when these addresses are calculated or defined. In the datasheets the addresses of slave chips always include the read/write bit at location 0. For example if a slave has the address R/W $80..$81 in its datasheet, with AVRco this address must be changed to $40, because the R/W bit must not be included here.

Slave address $00 is not implemented in any component. It is a Global Call address, which is similar to a Broadcast Message in networks. Most of the slave CPUs can handle this address. More details are given in the slave section.

3.22.1 Master Mode

In this implementation a Master always uses polling scheme; there are no interrupts used. There are no retries if a function fails.

Lock-up in Master Mode

The internal TWI hardware of the mega CPUs is very sensitive to external distortions, especially on the CLK line. This can result in a complete malfunction. This affects the TWImaster mode driver of the library. To avoid these deadlocks some Timeout functions are implemented into these drivers. If such a TimeOut occurs the TWI hardware will be reset and re-initialized and the library function will return with a false. If the external reason is removed the system continues without any intervention of the application. In order to use the Timeout support the SysTick must be imported.

3.22.2 Slave Mode

In this implementation a Slave always runs with interrupts.

TWI (I2C) Master
The TWI-interface, which is imported by TWImaster and defined by TWIpresc offers the three high-level functions TWIstat, TWIinp and TWIout. These functions are generalized, i.e. they do not depend on a particular slave chip. The programmer must observe the software protocol of the slave, by use and parameters, so that the telegram protocol (Hardware-Address, Clock-Generation etc) is implemented by the library driver.

All functions detect if the slave exists and is ready or if it doesn’t exist or is BUSY. If the function failed, FALSE is returned, otherwise TRUE.

Both transfer-functions offer the capability of reading and writing. The type of the parameter data automatically determines the block length. For further information see TWIinp and TWIout.

Imports

TWImaster

Defines and imports the Master TWI-Bus interface. With XMegas one of the TWI ports must be imported.
The TWI-Bus uses the onChip TWI module. The implemented interface can only work as Bus-master.

If a Master/Slave switching is necessary the AVRco TWI-LAN driver should be used.

If the TWImaster is imported by the Import clause, then the corresponding TWI prescaler must be defined which controls the speed of the TWI channel.

The import of the TWImaster automatically imports the library functions TWIstat, TWIinp and TWIout. These functions not only support single byte transfers, but also block transfers. The functions return a true or a false according to the result.

Import
SysTick, TWImaster;

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

TWIpresc
= 32
(TWI speed}

XMega

Import
SysTick, TWI_C;

// TWI_C, TWI_D, TWI_E, TWI_F

Define
OSCtype = int32MHz, PLLmul=4, prescB=1, prescC=1;

SysTick
 = 10;

{10msec Tick}

TWIprescC = TWI_BR400;

(TWI speed}

optional

TWInoTimeOutC = false;

// or true, default = false
TWIpresc

Defines the value to load into the TWI’s internal prescaler which controls the bitrate of the TWIbus in master mode. A large value reduces the speed, a small value increases the speed. But note that most of the I2C slaves can handle a bitrate of 100kBit/sec. In the real world the achievable bitrate can be limited by the wire length, the pullup resistors and other factors.

New I2C chip types can handle up to 400kBit/sec. But then the line length becomes critical. At the very least the pullups must be reduced to 1..2kOhm (this value is the sum of all resistors in parallel).

The system exports some related constants in master mode

Const
 TWI_BR100 : byte = nn;
// nn = prescaler value for 100kBits/sec

 TWI_BR400 : byte = nn;
// nn = prescaler value for 400kBits/sec

 TWI_BR500 : byte = nn;
// nn = prescaler value for 500kBits/sec

 TWI_BR600 : byte = nn;
// nn = prescaler value for 600kBits/sec

 TWI_BR800 : byte = nn;
// nn = prescaler value for 800kBits/sec

TWInoTimeOut XMega
Normally the variable TWI_TimeOuttn defines the Timeout with the TWI operations. With very fast slaves this TimeOut in x-SysTick counts can be avoided. With this pecial and optional Define (true) the TimeOut becomes reduced to about 4msec.
AVR+Mega driver export the byte variable TWI_TimeOut which can be in the range of 0..255 Systicks
Attention:

With the XMegas the MasterSlave and Slave modes are not supported!
With the following functions the suffix tn is used for identifying the selected TWI_C, TWI_D, TWI_E, TWI_F

tn can be C, D, E or F
With the XMega TWI the variable TWI_TimeOuttn is exported. This value is set to 100msec at system start, but can be set to any count of SysTicks (1..255) by the user.

Functions

3.22.2.1 TWIstat

The function TWIstat returns a true if the chosen slave exists and is responding. In case of an error the function returns as FALSE. An EEprom, for example, ignores any further accesses for a while after it was written. In this case it would return a false. In the case of error the function returns with a false.

With a real TWI-Slave the function returns a false if the Slave is internally busy. In this case a false doesn’t necessarily mean that the Slave not exists.
The definition of TWIstat is:

Function TWIstat (SlaveAdr : byte) : boolean;

Function TWIstatTN (SlaveAdr : byte) : boolean; // XMega
The parameter SlaveAdr is the physical module address of the TWI-Bus.

3.22.2.2 TWIinp

The function TWIinp reads at least one byte of the selected slave. If the function fails, the function returns with the result FALSE, otherwise the result is TRUE.

The definition of TWIinp is:

Function TWIinp(SlaveAdr : byte; var Data) : boolean;
Function TWIinpTN(SlaveAdr : byte; var Data) : boolean; // XMega
The parameter SlaveAdr is the physical module address of the TWI-Bus. Module-internal addresses (e.g. EEprom) have to be adjusted with a write bit by TWIout.

The variable Data has to be defined as a variable, where the type of the variable is arbitrary. The SizeOf(Data) and/or the number of occupied memory locations determine the number of bytes, which are read within the block and are passed to the variable data. With a byte, char or boolean it is 1 byte, with a word or integer it is 2 bytes, where the low byte is read before the high-byte.

If Data is a type of array, then the length of the array is established and a corresponding number of bytes is read, starting with the lowest address of the array (lowest index).

If the Data is a string, the max. possible length of the string is established and a corresponding number of bytes is read, starting with the index string[0]. That means, that a string is always read and written incl. length byte. Reading the length byte determines the number of the bytes, which have to be read. But the max. length of the destination string will not be exceeded.
3.22.2.3 TWIinpP

A similar function with a pointered destination is also available:

Function TWIinpP(SlaveAdr : byte; dst : pointer; len : word) : boolean;
Function TWIinpPTN(SlaveAdr : byte; dst : pointer; len : word) : boolean; // XMega
Attention:

By choosing the data variable pay attention, that the slave is able to handle a corresponding length of a blocktransfer. An TWI module, which only consists of an 8-bit parallel-port, is generally able to transfer one byte.

3.22.2.4 TWIout

The function TWIout writes at least one byte into the selected slave. If the function fails (TimeOut), the function returns with the result FALSE, otherwise the result is TRUE.

The definition of TWIout is:

Function TWIout (SlaveAdr : byte; Command : byte|word [; Data]) : boolean;

Function TWIoutTN(SlaveAdr : byte; Command : byte|word [; Data]) : boolean; // XMega
The parameter SlaveAdr is the physical module address of the TWI-Bus.

The parameter Command is depending on the slave, but has to be specified. It could be a byte variable, an 8-bit constant or a word. Often this command is a module-intern address (e.g. EEprom).

With Slave CPUs the parameter Command must always be a Byte!!

Bigger EEproms (>256 bytes) have a 16-bit address. Because it would not make sense to implement special library functions, the function TWIout must be informed whether the address parameter (2nd parameter) consists of one or two bytes, i.e. if it is 8- or 16-bits long. Because of this the parameter has to be definite and has to be declared as byte or word (as appropriate).

3.22.2.5 TWIoutP and TWIoutWP

A similar function with a pointered source is also available:

Function TWIoutP(SlaveAdr : byte; Command : byte; src : pointer; len : word) : boolean;

Function TWIoutPTN(SlaveAdr : byte; Command : byte; src : pointer; len : word) : boolean; // XMega
Function TWIoutWP(SlaveAdr : byte; Command : word; src : pointer; len : word) : boolean;

Function TWIoutWPTN(SlaveAdr : byte; Command : word; src : pointer; len : word) : boolean; // XMega
{ eeprom 8kBytes 24C65 }

Var w : word;

{ 16 bit adr }

 w:= 0000;

 b2:= 0;

 bool:= TWIout ($50, w);
{ set adr for read = 0000 }

while b2 < $FF do
{ read eeprom with adr auto incr}

 bool:= TWIinp ($50, b1);
{ result into b1 }

 inc(b2);

endwhile;

For components, which possess an additional internal address, for example EEproms and AD-converter, the required reading-address has to be set by a write-access before reading. The next reading-access then goes to this address. If the module possesses an auto-increment of the address (ADC, EEprom), it can be read continuously, without an output of a new address.

{ eeprom 256*8bit PCF8582E }

Var b2 : byte;

{ 8 bit adr }

B2:= 00;

bool:= TWIout ($53, b2);
{ set adr for read = 00 }

while b2 < $FF do
{ read eeprom with adr auto incr}

 bool:= TWIinp ($53, b1);
{ result into b1 }

 inc (b2);

endwhile;

The variable Data is optional and can be an 8- or 16-bit constant or any variable. Arrays, strings and string literals in ROM or EEprom are also possible. This parameter is optional and can, but does not need to, exist. The slave and/or the required slave-action determine the type of or omitting of data. The SizeOf(Data) or the number of the memory locations, which are occupied by this variable and/or constant, determine the number of bytes which are read out of the variable within the block and written into the slave. With a byte, char or boolean it is 1 byte, with a word or an integer it is 2 bytes, with the low order byte written before the high-byte.

If the result is a type of array, then the length of the array is established and a corresponding number of bytes is written, starting with the lowest address (lowest index) of the array.

If the Data is a type of string, the length of the string is established and a corresponding number of bytes is written, starting with the index string[0]. That means, that a string is always read and written incl. length byte. Within writing, it is the the length byte of the source string that determines the number of bytes written:
Count := length(Source).

Basically Data is treated as a block regardless whether it is a byte, word, string, array or record. Sometimes it can be useful to pass the result of an expression instead of firstly storing this result in a byte, word etc. but directly inserting expressions as Data into TWIout is not possible. In order to notify the compiler that Data is an expression and not a data area we use a special construction where Data is marked in a special way. To do this Data must be enclosed in parentheses.

bool:= TWIout ($53, b2, (a and b or c));

The result of this expression must be of byte, word, integer etc. Chars, boolean, strings etc are not allowed.

If the parameter Data was not specified, only the command byte is transferred.

Note:

When choosing the data variable/constant, make sure that the slave is able to handle a corresponding length of a block transfer. An I2C module, which only consists of an 8-bit parallel port, is generally able to transfer one byte.

The slave address 00 is the so-called General Call address. Normal I2C devices ignore this address. TWI-Slaves can, if enabled, respond to it. But a read access makes no sense because all slaves then send bytes and this gives an unexpected result.

3.22.3 Multi-Processing with the Master

In an application with Processes and/or Tasks in many cases the TWI-Bus is not only used as a network but also for other purposes (LCD, Ports etc). If so then different processes access the TWI and heavy conflicts inevitable, because sequential drivers (I2C, TWI, UART etc) are not re-entrant, i.e. they are not interruptible and cannot be re-entered. Because of this the TWI port works with a semaphore of the type DeviceLock.

TWI_DevLock : DEVICELOCK;

TWI_DevLockTN : DEVICELOCK;

The TWI driver observes and controls this semaphore. At the entry into the driver the semaphore is checked to see whether the driver is locked or not. If it is free the semaphore becomes activated (driver locked) and the job will be executed. After finishing the job the semaphore becomes released (unlocked).

If the driver is locked (occupied) at entry time then a Schedule is executed and the calling Process is put into the Schedulers queue. With one of the next few schedulings this Process is restarted and again checks this semaphore. This is repeated until the semaphore becomes free (unlocked).

Attention:
Because of the abort of a TWI access through “Schedule“ Tasks should not use TWI accesses. A schedule completely aborts and exits a Task and so a job will not be executed if a locked semaphore is found.

It is possible to set a flag if the Task solved the job successfully. If the flag is not set the Task must again be initiated to repeat this job, but this is somewhat complicated and should be avoided.

Example program:

An example is in the directory ..\E-Lab\AVRco\Demos\TWItest

An XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_TWI

3.22.4 TWI (I2C) Slave

XMega: the slave modes are not implemented.

The TWI-interface, which is imported by TWIslave and defined by TWIbuffer and TWImode offers the four high-level functions TWIrxStat, TWItxStat, TWIsetRdy and TWIgetRdy, TWIsetBUSY, TWIgetBUSY and TWIgetCMD. These functions are generalized, i.e. they are not dependant on a particular Master chip. The programmer/application must control a handshaking by the proper use of the state functions.

A TWI/I2C Slave never can send or receive data by itself. All transfers from and to the Slave are processed by the Master.

Handshake operation

The Slave uses its state functions to avoid current data being overwritten by newly incoming data and also ensuring that previously transmitted data is only fetched once by the Master. Functions: TWIgetRDY and TWIsetRDY.

Transparent operation

The RxBuffer and the TxBuffer act as a Dual port Memory. The Slave continuously reads data or commands out of the RxBuffer and also writes continuously new data into the TxBuffer. The Master reads and writes also both buffers. There is no additional information exchange, so the Slave cannot determine whether the Master has sent new data or fetched data. Functions: TWIsetBUSY and TWIgetBUSY

.

Support functions are TWIsetGC and TWIsetSlaveAddr.

Imports

TWIslave

Defines and imports the Master TWI-Bus interface.

The TWI-Bus uses the onChip TWI module. The implemented interface can only work as a Bus-slave.

If a Master/Slave switching is necessary the AVRco TWI-net driver should be used.

If the TWIslave is imported then the Rx/Tx buffersize must be defined. These buffers are used for transmitting and receiving data from/to the Master.

A default Slave address must also be defined. This address can be changed at runtime.

The import of the TWIslave automatically imports all accompanying library functions.

Import
SysTick, TWIslave;

Defines

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

TWIaddr
= 2;
(TWI slave address}

TWIbuffer
= 8, iData;
(TWI rx/tx buffersize, location}

TWImode
= Handshake;
(TWI handshake or transparent}

TWIaddr

Defines the default BUS-address of the Slave. Address 0 is not valid and neither are addresses greater than 127. The address can be changed at runtime.

TWIbuffer

The data exchange between Master and Slave goes through an RxBuffer and a TxBuffer. Both have an identical size and must be defined with this Define. The buffersize can be set between 2 and 255 bytes. The memory type (iData, xData) must also be stated. The buffers TWIrxBuffer and TWItxBuffer of array type are built.

TWImode

This Define installs the basic working method of the Slave. With the Transparent Mode there is no Handshake. Master and Slave both have unlimited access to the buffers of the Slave.

With the Handshake Mode only the Slave determines when the Master can read or write data.

3.22.5 Common Functions

TWIsetGC

The procedure TWIsetGC determines whether the Slave can receive Broadcasts (Slave addr = 0).

The handling of such a telegram is the job of the application. Only the master should make write accesses with address 0.

Procedure TWIsetGC (BroadcastEnable : boolean);

TWIsetSlaveAddr

The procedure TWIsetSlaveAddr changes the Slave address. Only address 1..127 is allowed.

Function TWIsetSlaveAddr (SlaveAddr : byte);
3.22.6 Functions in Handshake Mode

The Define TWImode determines the basic working method of the Slave. With the handshake mode the Slave always controls the communication and enables/disables the Master for send or receive.

Automatic disable

If the Master executes a read or write access to the Slave, the slave’s driver disables the TWI interface completely and sets its state accordingly. From now on each further access of the Master will be denied with a NACK.

Because of this the slave’s application must always check the RxState and the TxState. If one of the two functions returns with a true the interface is disabled and the slave’s program must at least call “TWIsetRDY(true)“ in order to re-enable the interface. But if the “TWIgetRxStat” resulted in a true the receive buffer must be analyzed first.

If the slave has filled its transmit buffer for a transmit to the Master, it should wait until the function “TWIgetTxStat“ returns with a true. Only then has the Master fetched data and new data can be written into the TxBuffer. After this with the function “TWIsetRDY(true)“ the interface should be enabled again so the Master access the slave again.

The function “TWIgetRDY“ informs about the state of the interface in a more common mode then rxStat or txStat.

It is the job of the programmer to establish a principal communication that controls the behavior of the slave as to whether it should send or receive something. It’s a good idea to use the command byte for this purpose.

Manual disable/enable

If the slave disables the TWI-interface with a call “TWIsetRDY(false)“ then the Master gets a NACK from its I2C/TWI interface with the next access to this slave and a false is returned to its application. A disabled TWI-interface must be enabled by the slave with “TWIsetRDY(true)“.

Internal addresses

Each read or write access of the Master resets the internal address-pointer of the slave to 0. The slave increments automatically this internal address with each byte transfer until the buffer end is reached or a completely new access is started by the Master.

The command byte of the Master with “TWIout“ is stored separately in the Slave and can always be read by the slave with the function “TWIgetCMD“. A write to the command byte of the slave without changing its RxBuffer looks like this:

Master

TWIout (SlaveAdr, $AA);
The command of the slave now contains $AA. Please note that the slave also with a write access to its command byte disables its interface to inform the application that there was a write access from the Master.

TWIgetRxStat

The function TWIgetRxStat checks whether new data has been received since the last call of TWIsetRDY(true). If there is new data available a true is returned, otherwise a false.

If the result is true the TWI-interface is also completely disabled.

Function TWIgetRxStat : boolean;
TWIgetTxStat

The function TWIgetTxStat checks whether the Master had data fetched from the Slave since the last call of TWIsetRDY(true). If all data has been transmitted a true is returned, otherwise a false.

If the result is true the TWI-interface is also completely disabled.

Function TWIgetTxStat : boolean;
TWIgetRDY

The function TWIgetRDY returns the state of the TWI-interface (enabled/disabled). If enabled the result is true, otherwise false. If the result is false and if there was no manual disable then a Master access caused the disabled status. What kind of access this was can be found by calling the function TWIgetRxStat or TWIgetTxStat.

Function TWIgetRDY : boolean;
TWIsetRDY

The function TWIsetRDY(true) resets the state of the RxBuffer to empty and the TxBuffer to full, so the Master can receive or transmit a new packet/data. The TWI-interfaces becomes enabled.

With TWIsetRDY(false) the TWI interface is completely disabled but the state of the buffers stay unchanged.

This function is only successful if there is no access from the Master at this time. If the function was successful a true is returned otherwise a false.

Function TWIsetRDY (ready : boolean) : boolean;
TWIgetCommand

The function TWIgetCommand returns the last command passed by the Master with TWIout. The content of this command has no meaning with the Handshake Mode. The internal write and read pointer will also be reset to 0 by each command. If the command was a part of a complex write function each successive write of the Master automatically increments the internal pointer until the end of the buffer is reached or a new command has been received.

Function TWIgetCommand : byte;
Functions in Transparent Mode

The Define TWImode determines the basic working method of the Slave. If the Transparent Mode is selected the Master and the Slave both have unlimited access to the Slave’s Rx and TxBuffer.

But if structures like words, integer etc. have to be transmitted there can be problems when both access an integer to the lo or hibyte because the TWI/I2C always transfers bytes. To also make this secure there are two disable/Handshake functions.

TWIsetBusy

The function TWIsetBusy disables or enables the buffers for Master accesses. IF the Slave accesses any buffer and it wants to prevent the Master doing a concurrent access, the Slave disables the buffer and the Master gets a NACK if it tries to access any buffer at the same time. This function should only be used if a transfer contains complex types. With simple bytes it makes no sense.

The function returns with a false if the blocking was not successful which is the case if the Master was already accessing a buffer at this time.

Function TWIsetTxBusy (busy : boolean) : boolean;
TWIgetBusy

This function returns the state of the TWI-interface that was set with TWIsetBusy. The function returns a true if the TWI is disabled/busy otherwise a false is returned.

Function TWIgetBusy : boolean;

Attention:

The command parameter of the Master-function TWIout has a special meaning in the Transparent Mode. It defines the start address of the following read or write access in the related buffer.

Master

TWIout (SlaveAdr, 2, $AA);
Slave

The data $AA is stored in Slave RxBuffer memory location 2.
RxBuffer[2]

Master

TWIout (SlaveAdr, 3);

/ set read addr
TWIinp (SlaveAdr, bb);
Slave

The data in memory location 3 is read.
TxBuffer[3]

The Slave automatically increments the command until the end of the buffer is reached or a new command has been received.

With TWIslave mode without handshake there are two status bytes:

TWIslvTxCount and TWIslvRxCount. With each received or transmitted byte the corresponding count is then incremented by 1.

Example programs and schematic:

An example of a Master implementation is TWImaster.

An example of a Slave-transparent implementation is TWIslaveTrn.

An example of a Slave- handshake implementation is TWIslaveHsk.

These are in the directory ..\E-Lab\AVRco\Demos\TWItest.

[image: image27.png]o
vee vee
vee ceut
@ MEGABS35DIP. R1 D1
10 13 1OMO rox Pser
10fvee e
avee
7 [L, e
28] oo =
Eviadi =
it T 8
S anapas poomTg HE-
3| napaa PDAINTT 12
= nsipas posiocts 15
34| napas PDSIOCTA [c
ANTPAT PDeICR1 (22
» Forioc2 [21
o 1 100n
231 Soamct peomanck [
2 S =)
Zecs przanomtz 3 2
Z1ecs eeuanioco [Soom Soon
51255 s reBSS e uon
Eacie i ey E
Pe7iSCk [S SCUC
15 £}
Sl noror AcD [T
pucx P)
an
5
PAM channel i s for posiive voltage generation
Viax. schvevae voage & +/CC
Wil 85 resoion the pum vae then fs . 255
vee
vee vee
vee c1 Q@ PPWM channs used for negative voltage generation
peka 5 e Max achicvabl votage /CC
Pt = Wil 85 resoion the pum vae then fs . 255
vl gl2 10w Ve joon The two P-AMP are e for bufenng and o vatage inverson
haph
= a0 @ =
Both output votages have aPigh ntemal resistance about 10OKORMS
For best resus £ showld bs bufered win an OP AW 1 hgher oads ae expected
5 The output voltage can be eed back o the ADC and then can be contold exactly
PROG_vee
mso 1lool
SIS0t host] | "Iy | Simple AVR DACs
o [y i ‘ I, | P sofware DACS
= i REA

COMPUTERS Tel. 0726391260 Copmui b E

D74506 Bad Rappenau Fax 07253/9124-2¢ D2 20 Aua 2007

schematic TWI

3.23 TWI-Net Library Driver

There are several ways how to establish a communication between CPUs in a multi-processor system. There is for example DualPort memory, SPI, RS232, CAN-Bus and also Ethernet.

Some of them must be discounted because of limited space or cost. A very simple but efficient way is to use the I2C bus for this purpose. All newer Atmel megas have an I2C build in which Atmel calls a TWI.

I2C is a simple but secure and moderate fast bus implementation. But using as a network the nodes are limited to CPUs which have the I2C/TWI implemented in hardware on the Chip. With pure onBoard nets the TWI-network should preferred. With inSystem networks which connects several boards the TWI is better than the SPI version and at least equals the RS485/LAN version. With longer distances and speed is a need the LAN network fits better. If speed is not so much important the TWI network is also useable with longer distances (some meters).

The only drawback of the TWI/I2C is its open-collector construction which in conjunction with the line length determines the maximal possible bitrate.

The AVRco implementation is mainly for such CPU-CPU connections. The strategy consists of a Multi-Master-Multi-Slave system. For a secure communication a proper frame protocol is implemented.

3.23.1 TWI network

A Multi-Master / Multi-Slave system is implemented which consist always of at least one Master and at minimum one Slave. Each Slave can become a Master and each Master can become a Slave, but more than one active Master at a time leads to possible collisions and should be avoided or at least must be handled with extreme care.

The Master controls all connected Slaves. No Slave should gain control of the BUS as a Master, although this is always possible. All data transfer, whether from or to the Slave are initiated and executed by the Master. By this method the serious difficulties with collisions and priorities are overcome. The mode change of a Slave to Master is supported by the library driver but must be handled with care by the application. The best way is that the active Master transfers the control of the bus to a Slave and the changes itself to a Slave or at least stays inactive. Thus collisions, which are not really detectible, can be avoided and are manageable.

Networks commonly work with telegrams, also called frames or packets. Through the usage of frames there is some overhead, but on the other hand the security of the system is increased. The TWI also implements a Broadcast feature, which this network uses as a command or info channel.

With the I2C/TWI operation only one subscriber can transfer data at one time. All others are listening or inactive. For example the master requests a frame from a slave. For that it sends a frame or command to the slave with the desired contents (address, data, commands). The slave recognizes its address and informs its user program about the reception of the frame/command. If the user program in the slave must send an answer to the master (not a must), it responds by initializing a frame, which the Master then reads out of the Slave. The Master places the received frame in its buffer and informs its application.

The contents and meaning of a frame is ambiguous and has to be defined by the user. So too is whether a slave responds with a responding frame or not. If the master is waiting for an answer, the slave should respond immediately because the master application is waiting and sends no further frames/commands until an answer is ready in the Slave. But this “handshaking” must be done by the application. It is not handled by the master or slave software itself.

The slave can also initiate a frame transmit by building a txFrame. The master recognizes this by polling the slaves and informs its application. The master always can send a frame to a slave provided the receive buffer of the slave is empty and the slave is active.

The slaves are completely interrupt driven; the master works in polling mode.

Principles of operation:

The Master transmits and receives all frames that are transferred on the BUS and provides it to its application program. There is no analysis or utilization in the master except the checksum checking.

Each Slave always listens on the BUS, but fetches only frames if the inherent hardware address is identical with its on address (node address). There is no analysis or utilization in the slave except the checksum checking. It’s the job of the application to interpret the frame content.

The slave also doesn’t respond with an acknowledge or an answer to the master, except for the TWI/I2C built-in hardware checks. This is also the job of the application.

Slave addresses must be greater than 0 and lower than 128. The address “0” is reserved for the Broadcast Command to all slaves. All slaves receive the broadcast frame (2 bytes, + optional frame), and their user program must analyze and interpret it. There must be no bus reaction of any slave.

The actual frame length (bytes) of a frame can vary from 0 bytes up to TWIframe –1. The address is max 7 bits (one byte) and therefore 126 nodes are possible. The checksum is always an 8 Bit Check.

Only the actual frame length is variable. Address size and checksum are fixed.

Structure of a frame:

| ADDRESS | FRAMELENGTH | DATA, DATA ... | CHECKSUM |

Address:

The address consists of a byte (1..127 slaves).

Each slave should have a unique address. The master has no address, because it transmits and receives all frames, regardless of the inherent address. But the Master also needs its own address because it can be switched to a Slave. If the Master transmits a packet it inserts its own slave address into the packet. If a Slave prepares a frame that will be fetched by the Master it also inserts its own address into the packet. This means that the internal address in a packet is always the address of the sender/initiator of the packet.

FrameLength:

The frame length is determined by define TWIframe = nn. If parameter nn < 256 there is one length byte transferred, if nn >= 256, 2 length bytes are transmitted. The actual frame length can be between 0 and nn bytes. In spite of this, all BUS subscribers must have the same kind of address size (Byte/Word), so the frame descriptors are always identical. The implemented buffersizes can vary in the range of a byte or word.

DATA:

The data area within a frame is defined by the length byte or word. The data length can be zero so the length byte/word also contains a zero.

CHECKSUM:

The checksum is computed over the complete frame. It is always an 8bit checksum.

Attention:

The max. frame length must be defined at design time with the use of “Define”. Also the Master, Slave or MasterSlave mode. A change at runtime is only possible for the MasterSlave mode. The actual frame buffer sizes can vary in the participants but only in the range of 0..FrameLength-1. Either all nodes possess a buffer size smaller than 256 Bytes (FrameLength is in one byte) or greater than 255 bytes (FrameLength is in one word). A mix is not allowed.

Security

The user‘s program in the master and slave can use an acknowledge cycle. This means that the master sends a frame and then waits for a response from the slave. This results in a very secure system, but the throughput is somewhat (or greatly) reduced. It is the job of the participating devices and/or the programmer to implement such a method.

Structure of a Broadcast Commands:

| SUBADDR | COMMAND |

or optional:

| SUBADDR | COMMAND | FRAMELENGTH | DATA, DATA ...

SubAddress:

This address is a byte and is used by the Slave to validate a Broadcast Command.

Command:

The Command is a byte and will be recognized and processed by the Slave after a validation (SubAdr, Mask etc).

FrameLength:

The parameter FrameLength is always a byte. To use the optional/additional data frame with broadcasts the broadcast frame must be defined with Define TWIframeBC = nn; Then it is possible for a dataframe with up to 255 bytes to be appended. The FrameLength can be 0..255.

The main job of a Broadcast is control a specific or all Slaves with commands, independent of their actual TxFrame or RxFrame state. So for example it is possible to break deadlocks caused by incomplete or destroyed Frames when running in a multiprocessing system and using semaphores.

Transfer:

With the slave the data transfer is completely handled in interrupt procedures. Therefore it is guaranteed that if a frame is completely built, then this frame is transferred to the target in a very short time. It is important that in the slave the interrupts must not be disabled for a long time. This is especially true at high bit rates. With 100kBit/sec each byte transfer generates an interrupt in 100usec cycles.

Line considerations:
The I2C/TWI bus is an open collector bus. This means all drivers only can switch to ground. A logical 1 is always generated from the pullups. The reason is that both SCL and SDA lines always act bidirectionally. Each time the Slave can insert a clock stretch by pulling down the clock line. In addition to this the Slave must acknowledge some states by pulling down the data line. All this leads to a simple bus hardware but also supports a secure communication.

The disadvantage with I2C/TWI is the limited speed imposed by the open collector-pullup combination.

The lower the pullup resistor is the higher the speed and/or line length can be. But also the power consumption increases. The pullups must not fall below 500Ohms; otherwise the port pin drivers of the CPU can be damaged (overcurrent).

Instead of Pullups, constant current sources can also be used. These provide at the same power consumption with a much shorter rise time and therefore allow a faster bitrate.

Example program:

An example is in the directory ..\E-Lab\AVRco\Demos\TWInet

New I2C chip types can handle up to 400kBit/sec. But then the line length becomes critical. At a minimum the pullups must be lowered to 1..2kOhm, where this value is the sum of all resistors in parallel.

The system exports some related constants in master mode

Const
TWI_BR100 : byte = nn; // nn = prescaler value for 100kBits/sec

TWI_BR400 : byte = nn; // nn = prescaler value for 400kBits/sec

These constants can be used in the define section:

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

TWIpresc = TWI_BR100;
(TWI speed 100kBit/sec}

3.23.2 Implementation

Imports

The TWIport must be imported, as usual in the AVRco system, by an import directive.

Import TWInet;

Defines

Define TWInode = $12;

{node addr, always necessary}

Declaration of the node address. Can be changed at runtime.

Define TWInetMode = Master;
{Master, Slave or MasterSlave}
The operation type of the unit as a master, slave or MasterSlave must be defined. A change of this type at runtime is only possible if MasterSlave has been defined.

Define TWIpresc = 32;

{prescaler, bitrate for Master mode}
Defines the bitrate of the Master. Must be >= 8

The frame type of the TWI must be identical in the Master and Slave and must be defined by the following define:

Define TWIframe = 16, iData;
{Framesize max. 16 bytes in iData}
Both Master and Slave have a receive- and a transmit buffer. All Masters and Slaves should possess the same buffer size (not an absolute must). The defined buffer size determines also the required internal memory. The transferred frames can be less than but never larger than this parameter.

Because the actual frame length is transmitted as a parameter in the frame, all frames must be managed with either a byte or a word as the length information. A mix of them is not possible. This limitation simplifies the protocol and its handling dramatically and is not a serious limitation. All frame size definitions therefore must fit either into a byte or a word, and thus must be smaller than 256 bytes or can be larger depending on this.

The size of these buffers and the memory location are determined by the above Define.

With Broadcast telegrams it is possible send an optional data frame in addition to the two standard parameters SubAddr and Cmd. This option must be imported with the following Define:

Define TWIframeBC = 64;

{Broadcast Framesize max. 16 bytes}

Also here either all or none of the Bus participants (Master and Slaves) must have this Import. If imported then all must have the same Framesize.

3.23.3 Exported Types

Type tTWInetmode
= (TWInetSlave, TWInetMaster);

Type tTWIStates
= (TWIRxEmpty, TWIRxBusy, TWIRxFull, TWITxEmpty, TWITxBusy, TWITxFull,

 TWIbcCMD, TWIstatFail);

Type tTWINetState
= set of tTWIStates;

3.23.4 Exported Variables

3.23.4.1 Memory Organization

All the TWI related user accessible variables reside one after another in the defined memory area. The order is, beginning with the lowest address, the following:

TWIrxStatReg
Byte

TWIrxADR

Byte

TWIrxLEN
Byte at a Framelength < 256 bytes, word at a Framelength > 255 bytes
TWIrxBUFF
Array[0..TWIframe-1] of Byte;

_TWIrxCHK
Byte

TWItxStatReg
Byte

TWItxADR
Byte
TWItxLEN
Byte at a Framelength < 256 bytes, word at a Framelength > 255 bytes
TWItxBUFF
Array[0..TWIframe-1] of Byte;
_TWItxCHK
Byte
TWIrxStatReg, TWItxStatReg

These two variables (Byte) must only be read! Both pseudo status registers are continuously updated while a receive or transmit of a frame is going on. If idle, all bits are zero. If the action proceeds the bits become a “1” from right to left. If the action is finished successfully, all bits are “1’ and the byte has the value $FF. Values between $00 and $FF mean either an error has occurred or the frame isn’t completely received or transmitted yet. If a send frame is processed, there can be no error. If a frame was received a $9F means that a checksum error occurred. The user program must poll the bit7 of this register to see if a frame is complete or not. A correct and complete received frame shows a $FF after a receive process, and with the Master and Slave this byte becomes “00” after a successful complete transmit operation.

(* bit0,1
:
00 = idle
*)

(*

01 = start
*)

(*

11 = node addr
*)

(* bit2,3
:
00 = idle
*)

(*

01 = first len
*)

(*

11 = second len
*)

(* bit4
:
 0 = rx/tx frame
*)

(*

 1 = rx/tx frame
*)

(* bit5,6
:
00 = idle
*)

(*

01 = start check
*)

(*

11 = check ready
*)

(* bit7
:
 0 = processing
*)

(*

 1 = rx/tx complete
*)

The following show the states of the Status Register during receiving or transmitting a Frame, if there is no error.

Master transmits:

TWItxStatReg
00h
idle.

01h
Frame is completely assembled

02..FFh
transmit in progress

00h
transmit complete

Master receives:

TWIrxStatReg
00h
idle

01..7Fh
receive in progress

FFh
receive is completed

If the application has processed the received Frame it must invalidate it with “TWIRXCLEAR“.

The Status Register then contains 00h

Slave transmits:

TWItxStatReg
00h
idle.

01h
Frame is completely assembled

02..FFh
transmit in progress

00h
transmit complete

Slave receives:

TWIrxStatReg
00h
idle

01..7Fh
receive in progress

FFh
receive is completed

If the application has processed the received Frame it must invalidate it with “TWIRXCLEAR“.

The Status Register then contains 00h

TWIrxAdr, TWItxAdr

These vars are of type byte

Master:

The Master transmits and polls all frames. Because the I2C/TWI bus Master transmits all frames to the Slave and also fetches available frames from the Slave, the Master and its application program always know where the frame is sent to or received from.

If the Master sends a frame it must insert its own node address into the variable “TWItxAdr”. The address “0” is reserved for broadcast commands and must not be occupied by a master or slave for its own node address.

Slave:

A slave only receives those frames whose hardware address is equal to its own node address. The node address of the sender (Master) is stored into the location “TWIrxAdr”. Broadcasts with the target address “0” are processed separately. See below.

“TWItxAdr” always contains the node address of the Slave. This is done by the driver.

TWIrxLen, TWItxLen

These variables are of type byte if “Define TWIframe“ < 256 bytes and of type word if “Define TWIframe“ > 255 bytes. Frames can have a zero length. The maximum length cannot exceed the number of “Define TWIframe = nn“. Basically all slaves and the master should have the same “TWIframe“ sizes, but it’s possible that some slaves have a shorter value of “TWIframe“. The master’s user program must know this and can only send frames to these nodes with a length that will fit into the receive buffers of those slaves.

TWIrxLen is updated whilst receiving a frame with the value of which is received internally in the frame.

TWItxLen is set by the function “TWItxFrame(Node, len)“ and also transmitted within the frame.

TWIrxBuff, TWItxBuff

The size of these two buffers is determined by the Define TWIframe. The buffers can be seen as an Array of byte and therefore can be also accessed in this manner.

The indexes of these arrays are 0 to TWIframe -1.

TWItxBuff[0] := $56;

X := TWIrxBuff[6];

It’s recommended and very useful to overlay a structure (record) over the Rx part and the Tx part of the TWI memory. By that a symbolic access to the complete data structure is possible.

type tTWIRec = record

TWIstate : byte;
// TWI state, size and loc fixed

TWInode
: byte;
// node, size and loc fixed

TWIlen
: byte/word;
// framelen, size and loc fixed

TWIusr1
: byte;
// user defined

TWIusr2
: word;
// user defined

TWIdata
: array[0..TWIframe-4] of char; // user

end;

var

{$NOOVRCHECK}

 TWIRxRec[@TWIrxStatReg] : tTWIRec;

{$NOOVRCHECK}

 TWITxRec[@TWItxStatReg] : tTWIRec;

// write Frame

 TWITxRec.TWIusr1:= $30;

 TWITxRec.TWIusr2:= $3231;

 TWITxRec.TWIdata[0]:= '3';

_TWIrxChk, _TWItxChk

These are of type byte. The checksum is calculated over the complete frame (TWIRXADR + TWIRXLEN + TWIRXBUFF). The same is true for both Tx and Rx. The checks are processed automatically while receiving and transmitting. These two vars are only for information and to analyse any occurring errors.

3.23.4.2 Variables only in MasterSlave and Slave Mode

The following variables are only present in MasterSlave mode and in Slave mode:

Define TWInetMode = MasterSlave;

or

Define TWInetMode = Slave;

In addition they are only relevant if also the Slave mode is activated if the MasterSlave id defined.

The Broadcast variables control the behavior of a Slave if a Broadcast Command of a Master is received.

I2C/TWI Broadcasts are initiated by the hardware address 00h. All Slaves receive all Broadcasts. To make further decisions a sub-address and a mask are implemented. The Slave driver uses them to find out whether a Broadcast Command is of interest or not. The Master which starts the Broadcast at first sends a data byte which contains the command byte followed by the sub-address. As an option the additional Broadcast frame is sent. All Slaves then internally have to perform the following operation:

if (SubAddr or TWIadrMask) = (NodeAdr or TWIadrMask) then
 TWIbroadcastAdr:= SubAdr;

 TWIbroadcastCMD:= CMD;

 Receive optional Broadcast frame;

 Inc (TWIBROADCASTSEMA);

endif;
TWIadrMask

This type is a byte. In case of a Broadcast the Slave uses this mask in conjunction with its NodeAdr to find out whether the received sub-address is sufficient or not.

TWIBroadcastADR

This type is a byte. This variable contains the sub-addr of the last accepted Broadcast Command.

TWIbroadcastCMD
This type is a byte. This variable contains the command part of the last accepted Broadcast Command.

Broadcast Option

If Broadcast Frames were imported by Define “TWIframeBC“ there are additional parameter and data in the Master and Slave applications.

TWIBroadCastCount

This type is a byte. This variable contains the initial count (in bytes) of the frame send by the master.

TWIBCStatReg

This type is a byte. This variable contains the count (in bytes) that was received in the frame by the slave.

TWIBroadCastBuffer

This type is a Array[0.. TWIframeBC-1] of Byte. This variable contains the received frame.

A check of the BroadCast frame can be done by comparing the two variables TWIBCStatReg and TWIBroadCastCount. If there is difference the frame invalid or defective.

3.23.5 Multi-Processing with the Master

In an application with Processes and/or Tasks in many cases the TWI-Bus is not only used as a network but also for other purposes (LCD, Ports etc). If so, then different processes access the TWI, and severe conflicts are inevitable because such sequential drivers (I2C, TWI, UART etc) are not re-entrant, i.e. they are not interruptible and cannot re-entered. Because of this the TWI port works with a semaphore of the type DeviceLock.

TWI_DevLock : DEVICELOCK;
The TWI driver observes and controls this semaphore. On entry into the driver the semaphore is checked as to whether the driver is locked or not. If it is free the semaphore becomes activated (driver locked) and the job will be executed. After finishing the job the semaphore is released (unlocked).

If the driver is locked (occupied) at entry time then a Schedule is executed and the calling Process is put into the Schedulers queue. With one of the next few schedulings this Process is restarted and again checks this semaphore. This is repeated until the semaphore becomes free (unlocked).

Attention:
Because of the suspension of a TWI access through “Schedule“ Tasks should not use TWI accesses. A schedule completely aborts and exits a Task and so a job will not be executed if a locked semaphore is found.

It is possible to set a flag to determine if the Task solved the job successfully. If the flag is not set the Task must again be initiated to repeat this job. But this is somewhat complicated and should be avoided.

3.23.6 Multi-Processing with the Slave

TWIbroadcastSEMA

This type is a semaphore. With each accepted Broadcast Command from a Master the Slave increments this sema by one. The content of the variables “TWIbroadcastAdr“ and “TWIbroadcastCMD“ are overwritten with new values. The same is also true for the optional “TWIBroadCastBuffer“
TWIrxSEMA

This type is a semaphore. With each received Frame from a Masters the Slave increments this sema by one. Note that a checksum error also leads to an increment because the Frame is complete.

TWItxSEMA

This type is a semaphore. With each transmitted Frame to a Masters the Slave increments this sema by one.

If processes are used it makes sense that a specific process waits for the reception of a Frame. This can be done with “WaitSema(TWIrxSema)”. The process then waits until a Frame has been completely received. Because a checksum error also increments the sema the process must use “GetTWIslaveSTAT(0)“ or “TWIRXSTAT“ to find out the real state of the received Frame. The “TWIrxStatReg“ then contains 00h or, in case of an error, an errorcode.

A process can also wait for an incoming Broadcast Command with “WaitSema(TWIbroadcastSema)”.

For the Slave it’s also possible to let a process wait until the Master has completely fetched a provided Frame. This can be done with “WaitSema(TWItxSema)”. The process is woken up if the Frame sent. Then the “TWItxStatReg“ contains a 00h.
If there are invalid and incomplete Frames caused through corruptions then it’s possible that a semaphore will be never incremented and the accompanied process will never get woken up.

3.23.7 Exported Functions and Procedures

Procedure SetTWInodeAddr (sAddr : byte);
Each TWI Master and Slave must have its own unique node address which must exist only once in a network. This address is assigned by the Define TWInode = nn. However it is possible to change this address by this procedure.

This address is used as a hardware address when reading or writing a TWI Slave. The hardware address is copied into the Frame internal addresses TWIrxAdr and TWItxAdr by the sender when a Frame is built for a transmit operation. Then a receiver of a Frame always can detect the sender of this Frame.

Function GetTWIslaveSTAT (node : byte) : tTWINetState;
This function serves to retrieve the state of the local Rx and Tx buffers and Frames and with a Master also to check the state of a Slave’s Frames. If the system is in slave mode or defined as a pure Slave the parameter “node“ will be ignored and the local state is always returned.

If the system is in Master Mode or defined as a pure Master then with the parameter “node“ = 0 the function returns the local state and with “node“ <> 0 it returns the state of the Slave which has the internal hardware address “node“.

The result of the function is a bitset that is constructed in this manner:

Type tTWIStates = (TWIRxEmpty, TWIRxBusy, TWIRxFull, TWITxEmpty, TWITxBusy, TWITxFull,

 TWIbcCMD, TWIstatFail);

Type tTWINetState
= set of tTWIStates;

If the system is a Master and the result is retrieved from a Slave the specific values have the following meaning:

TWIRxEmpty
the RxBuffer of the Slave is empty and can receive a Frame.

TWIRxBusy
the RxBuffer is occupied but has errors
TWIRxFull
the RxBuffer is full but not processed by the Slave

TWITxEmpty
the TxBuffer of the Slave is empty

TWITxBusy
the Slave is assembling a new Frame or the last Frame had errors

TWITxFull
the Slave has built a new Frame that can be fetched by the Master

TWIbcCMD
the Slave has not invalidated the last Broadcast Command

TWIstatFail
the Slave does not respond to any request

The processing and analysing of the result can be done in this way:

TWIstate:= GetTWIslaveStat (02);

if TWIstatFail in TWIstate then
 ..

else if [TWIrxEmpty, TWItxFull] in TWIstate then
 // either send a frame or receive a frame

else …

If a TWI node checks itself the value “TWIstatFail“ can never occur.

Function TWIrxStat : boolean;
This function returns a true if a frame has been received complete with or without errors and has not been invalidated with “TWIrxClear“. Then the program must analyse the TWIrxStatReg to check for errors. As long as as frame is complete, or if there are errors, a new incoming frame is discarded. It is the job of the user program to process a received frame as fast as possible and then invalidate it so a new frame can be received. Frames cannot get lost but the system can be blocked.

Procedure TWIrxClear;
The statusbyte of the RxBuffer is reset. With the slave another frame can be received. If the system is in MasterSlave or Slave Mode the semaphore “TWIrxSema” is also reset.

Function TWItxStat : boolean;
This function checks whether a frame is already send or not. If the frame is send or invalidated by TWItxClear the function returns with a true; otherwise a false is returned. A new frame can only be sent if the current frame is completely transmitted or the state is reset with “TWItxClear“.

Procedure TWItxClear;
The statusbyte of the TxBuffer is reset. Another frame can be transmitted. If the system is in MasterSlave or Slave Mode the semaphore “TWItxSema” is also reset.

Function TWItxFrame (node : byte; len : byte[word]) : boolean;
This function first checks whether the last frame was sent successfully and also that the parameter “node” is valid (0 < node < 128). If this fails a false is returned. In this case by using TWItxClear a frame can be reset without deleting the data and TWItxFrame can be called again. If the frame can be transmitted the “len“ parameter is stored in “TWItxLen“. The parameter “node“ should have always the same value as the target’s variable “TWInodeAdr“. It is used as the hardware address. The sender’s node address is stored into “TWItxAdr.

1. In the case of the Master the transmitting starts. If the Slave responds the entire Frame will be send.

If successful, the “TWItxStatReg“ now contains 00h. If the Slave doesn’t respond or there is an

transmission error the “TWItxStatReg“ now contains a value > 00h and < FFh. For example if the Slave doesn’t respond the resulting value is 80h. The Master’s application also can use the function “GetTWIslaveStat(slavenode)“ to check the current state of the Slave before transmitting a Frame.

2. If a Slave calls TWItxFrame this function initializes the Frame and changes “TWItxStatReg“ to 01h and

returns with a true, but the Frame is still not transmitted. Only if a Master reads this Frame with its “TWIrxFrame“ function will the Slave’s status register is reset to 00h and also the semaphore “TWItxSema“ be incremented. The parameter “node” is not used by a Slave transmit, but this must also be valid.

3.23.8 Functions and Procedures only available in MasterSlave mode

Procedure SetTWImode (const twimode : tTWInetmode);
This procedure switches the device mode from Master to Slave and vice versa. A Master should only switch itself into Slave mode if it is ensured that a Slave becomes a Master after this. A Slave should switch itself into the Master mode if it gets the permission from the current Master. With two or more Masters on the bus collisions are certain, and these cannot be handled in an easy way.

tTWInetmode = (TWInetSlave, TWInetMaster);
The current mode can be found by reading the system variable _TWInetMode.

Important:
In MasterSlave mode a TWI system always starts up in slave mode. If this system is to become a Master this procedure must be called.

If called, this procedure clears all buffers, frames, states and semaphores.

3.23.9 Functions and Procedures only available in MasterSlave and Master mode

These functions must only be used if the system is in Master Mode or if it is defined as a pure Master.

Function TWItxBroadcast (cmd : byte; subnode : byte) : boolean;
This function generates an I2C Broadcast to all Slaves. Each I2C port of an active Slave always receives all Broadcasts by definition. I2C Broadcasts are pure write accesses. The Broadcast consists of the hardware address 00h, an appended Command byte and the sub-node address. Hence the Frame consists of 2 bytes.

If the “TWIframeBC“ was defined/imported, a variable length Frame is appended. The function below must be used:

Function TWItxBroadcast (cmd, subnode, count : byte): boolean;
The Master fills the Array TWIBroadCastBuffer with data and passes the bytecount in the function above in the parameter “count“. The slave then reads these bytes out of its own TWIBroadCastBuffer.
The Broadcast variables control the behavior of a Slave if a Broadcast Command of a Master is received.

I2C/TWI Broadcasts are initiated by the hardware address 00h. All Slaves receive all Broadcasts. To make further decisions a sub-address and a mask are implemented. The Slave driver uses them to find out whether a Broadcast Command is of interest or not. The Master which starts the Broadcast first sends a data byte which contains the command byte followed by the sub-address. All Slaves must then internally do the following operation:

if (SubAddr or TWIadrMask) = (NodeAdr or TWIadrMask) then
 TWIbroadcastAdr:= SubNode;

 TWIbroadcastCMD:= CMD;

 //Optional receive data frame;

 Inc (TWIbroadcastSema);

endif;
With each accepted Broadcast Command from a Master the semaphore “TWIbroadcastSema” is incremented by one. The content of the variables “TWIbroadcastAdr“ and “TWIbroadcastCMD“ are overwritten with new values. The same is also true for the optional “TWIBroadCastBuffer“.
A Broadcast will be received regardless of what the internal Rx or Tx state of the Slave is. It also doesn’t change these states because a Broadcast with the Master and the Slaves is processed totally independently to the common Frames.

Function TWIrxFrame (node : byte) : boolean;
With a Master this function reads a Frame from a Slave. First the parameter “node” is checked. If it is zero or > 127 the function returns with a false. Then it checks whether the last received Frame was processed by the Master’s application (TWIrxStatReg = 00h). If this fails a false is returned. In this case by using TWIrxClear a frame can be reset and TWIrxFrame can be called again. The parameter “node“ should have always the same value as the target’s variable “TWInodeAdr“. It is used as the hardware address.

1. The Master now starts reading the Slave. If the Slave responds the entire Frame will be received. If successful, the “TWIrxStatReg“ now contains FFh. If the Slave doesn’t respond or there is an transmission error the “TWIrxStatReg“ now contains a value > 00h and < FFh. For example if the Slave doesn’t respond the resulting value is 80h. The Master’s application also can use the function “GetTWIslaveStat(slavenode)“ to check the current state of the Slave before receiving a Frame.

If the frame is completely received the actual byte count of the RxBuffer is stored in “TWIrxLen“. The sender’s node address is stored into “TWIrxAdr”.

2. If a Master has read an entire Frame with its “TWIrxFrame“ function the Slave’s status register

“TWItxStatReg” is reset to 00h and also the semaphore “TWItxSema“ will be incremented.

Example programs and schematic:

three examples

TWInetMastr,

TWIslave and

TWInetMsSl
are in the directory ..\E-Lab\AVRco\Demos\TWInet

[image: image28.png]

schematic TWI_Net

3.23.10 Additional Functions
In order to also have an access to standard I2C-devices in the TWInet the general functions for I2C chip access are also implemented. But here “Slave“ means a normal I2C-chip and not network slave! So don’t access net-slaves with these functions and also don’t access standard I2C chips with the network functions!

TWIstat

The function TWIstat returns a true if the chosen slave exists and is responding. In case of an error the function returns as FALSE. An EEprom, for example, ignores any further accesses for a while after it was written. In this case it would return a false. In case of error the function return with a false.

With a real TWI-Slave the function returns a false if the Slave is busy internally. In this case a false doesn’t mean that the Slave does not exist.
The definition of TWIstat is:

Function TWIstat (SlaveAdr : byte) : boolean
The parameter SlaveAdr is the physical module address of the TWI-Bus.

TWIinp

The function TWIinp reads at least one byte of the selected slave. If the function fails, the function returns with the result FALSE, otherwise the result is TRUE.

The definition of TWIinp is:

Function TWIinp (SlaveAdr : byte; var Data) : boolean;
The parameter SlaveAdr is the physical module address of the TWI-Bus. Module-internal addresses (e.g.. EEprom) have to be adjusted with a write by a TWIout.

The variable Data has to be defined as a variable, but the type of the variable is arbitrary. The SizeOf(Data) or the number of occupied memory locations also determines the number of bytes which are read within the block and are passed to the variable data. With a byte, char or boolean it is 1 byte, with a word or integer it is 2 bytes, where the higher order byte is read before the low-byte.

If Data is a type of array, then the length of the array is established and a corresponding number of bytes is read, starting with the lowest address of the array (lowest index).

If the Data is a string, the max. possible length of the string is established and a corresponding number of bytes is read, starting with the index string[0]. That means, that a string is always read and written incl. length byte. The length byte does not determine the number of the bytes that have to be read, but rather the length of the destination string string does:

Count := sizeOf(Destination).
Important:

By choosing the data variable make sure that the slave is able to handle a corresponding length of a block transfer. A TWI module, which only consists of an 8-bit parallel-port, is generally able to transfer one byte.

TWIout

The function TWIout writes at least one byte into the selected slave. If the function fails (TimeOut), the function returns with the result FALSE, otherwise the result is TRUE.

The definition of TWIout is:

Function TWIout (SlaveAdr, Command : byte|word [; Data]) : boolean;
The parameter SlaveAdr is the physical module address of the TWI-Bus.

The parameter Command depends on the slave, but has to be specified. It could be a byte variable, an 8-bit constant or a word. Often this command is a module-internal address (e.g. EEprom).

With Slave CPUs the parameter Command must always be a Byte!!

Bigger EEproms (>256 bytes) have a 16-bit address. Because it would not make sense to implement special library functions, the function TWIout must be informed if the address parameter (2nd parameter) consists of one or two bytes, that is whether it is 8- or 16-bits long. Because of this the parameter has to be definite and has to be declared that way.

{ eeprom 8kBytes 24C65 }

Var
w : word;

{ 16 bit adr }

w:= 0000;

b2:= 0;

bool:= TWIout ($50, w);

{ set adr for read = 0000 }

while b2 < $FF do

{ read eeprom with adr auto incr}

 bool:= TWIinp ($50, b1);

{ result into b1 }

 inc (b2);

endwhile;

For components that have an additional internal address, for example EEproms and AD-converter, the required reading-address has to be set by a write-access before reading. The next read-access then goes to this address. If the module has an auto-increment of the address (ADC, EEprom), it can be read continuously, without an output of a new address. For example:

{ eeprom 256*8bit PCF8582E }

Var
b2 : byte;

{ 8 bit adr }

B2:= 00;

bool:= TWIout ($53, b2);

{ set adr for read = 00 }

while b2 < $FF do

{ read eeprom with adr auto incr}

 bool:= TWIinp ($53, b1);

{ result into b1 }

 inc (b2);

endwhile;

The variable Data is optional and can be an 8- or 16-bit constant or any variable (but arrays, strings and string literal are not allowed). This parameter is optional and can, but does not have to exist. The slave and/or the required slave-action determine the type of or omitting of data. SizeOf(Data) or the number of the memory locations which are occupied by this variable or constant determine the number of bytes that are read out of the variable within the block and written into the slave. With a byte, char or boolean it is 1 byte, with a word or an integer it is 2 bytes, where the higher byte is written before the low-byte.

If the result is a type of array, then the length of the array is established and a corresponding number of bytes is written, starting with the lowest address (lowest index) of the array.

If the Data is a type of string, the length of the string is established and a corresponding number of bytes is written, starting with the index string[0]. That means, that a string is always read and written incl. length byte. Within writing, the length byte does not determine the number of the bytes that have to be written but rather the length of the source string determines this:

Count := sizeOf(Source)
If the parameter data was not specified, only the command byte is transferred.

Important:

When choosing the data variable/constant, make sure that the slave is able to handle a corresponding length of a block transfer. An I2C module, which only consists of an 8-bit parallel-port, is generally able to transfer just one byte.

Lock-up in Master mode

The internal TWI hardware of the mega CPUs is very sensitive to external distortions, especially on the CLK line. This can result in a complete malfunction. This concerns the TWInetmaster mode driver of the library. To avoid these deadlocks some Timeout functions are implemented into these drivers. If such a TimeOut occurs the TWI hardware will be reset and re-initialized and the library function returns with a false. If the external cause is removed the system continues without any intervention of the application.

In order to use the TimOut support the SysTick must be imported.

3.24 AD-Converter

3.24.1 ADCPORT

Defines and imports the AD-converter (only if it exists in the chip).

The AD-converter is read in the background of the interrupt-service SysTick and is restarted. The reason is, that a free-running ADC (depending on the processor) would cause an interrupt every 10 to 40usec. Because of the necessary administration work the system would be 'dense' with these interrupts. A polling of the converter would have the same result in the end. The ADC administration by the SysTick e.g. all 10msec makes nearly no load.

Import
SysTick, ADCPort;

Define
ProcClock
= 4000000;

{4Mhz clock }

SysTick
= 10;

{10msec Tick}

ADCchans
= 2, iData;

{use 2 Channels}

ADCpresc
= 16;

{prescaler 16}

3.24.2 ADCchans, RAMpage

Required number of ADC-channels.

It has to be between 1 and the max defined number of channels, which is in the description file (xxx.dsc) of the processor. The recorded values are stored in reserved memory locations, and they can be read by GetAdc any time. A value of 4 means, that channels 1..4 are used.

Sometimes it’s useful that only one or two channels are imported, e.g. 4 and 7. To save resources one or two channels can be random defined:

ADCchans = [4, 7], iData;

or only one channel:

ADCchans = [5], iData;

or a range of channels

ADCchans = [2..5], iData;

Result integration:

ADCchans = 2, iData, int2;

{2-times integrate}

With "Int2" the previous result is added to the new result and then the sum is divided by two.

Result:= (prevValue + newValue) div 2;

ADCpresc

Required prescaler of the AD-converter. This value determines convertion time of the ADCs and also indirectly the resiliance to spikes and noise in the signal.

3.24.3 Functions and Procedures

GetADC

Returns data of the ADC. Function to indirectly read the ADC-channels.

ADCport and SysTick have to be imported. The passing parameter indicates the required channel (1..ADCport). The parameter runs from 1 to n. The result of the function always is an unsigned word.

a:= GetAdc (1);
{read first channel}

With only one active channel the corresponding function is

a:= GetAdc;

{read a single channel}

SetADCfixed

With an ADC-import if there are more than 1 channel defined, the ADC-mux will be advanced in every SysTick by one step.

If for example 6 channels are imported, a specific channel will be converted each 6th SysTick.

This could be a problem if a control loop is activated at limited time. It can be too slow.

With

Procedure SetAdcFixed (fix : boolean; chan : byte);

the ADC can be fixed to a single channel (fix =
true) and the mux does not advance. The other channels remain with their previous results until this procedure is called again with fix = false.

In this case the parameter "chan" will be ignored

3.24.4 Call-Back Function onADCread

With some special AD-Conversions sometimes it is necessary that the application gets informed if an ADC channel is read. For this reason the procedure "onADCread" is implemented.

Procedure onADCread;

So if the application implements this procedure:

Procedure onADCread;

begin

...

end;

then "onADCread" is called with each SysTick (Timer Interrupt) at the point where the ADC result is read.

ACCB/ACCA (R16/R17) (lo/hi) contain the ADC result and ACCALO (R18) contains the actual channel number (0..7). For example it is possible to use only one ADC channel of the CPU and expand it with an external analog multiplexer.

Because the ADC driver always places this result into the same memory location (variable) the application must handle the result and must store it by using the current multiplexer setting. Of course the external multiplexer must also be handled here.

The same is true here as with other Call-Back functions from SysTick:

no big data management, no function calls etc. If possible write all in assembler.

Important:

1. Local parameters are prohibited.

2. The register SREG, _ACCA/R17, _ACCB/R16, _ACCALO/R18, _ACCCLO/R30 and _ACCCHI/R31 are

 saved always. If Pascal statements or other registers are used, then the additional register must be

 saved manually before their use and then restored.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\NonLinear

3.25 AD-Converter XMega

3.25.1 ADC_A ADC_B

Defines and imports the AD-Converters. (as far as present in the chip).

The XMegas provide upto 2 separate AD-Converters. They are always connected to PortA and PortB and are named ADC_A and ADC_B.

These converters can work absolutely autarc. This means they can scan continously upto 8 channels and store the results into the channel’s result register. Because a Port can have upto 8 inputs the application must decide which of the 8 pins must be scanned. With this implementation there is no Interrupt and no DMA used. The SysTick is only used if more than 4 pins/channels should be scanned;
The settings are a resolution of 12bit, single-ended, unsigned and right justified.

Import
SysTick, ADC_A, ADC_B;

Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

// possible OSC types: extXTAL, extClock, ext32kHz, int32Khz, int2MHz, int32MHz

//>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

OSCtype
= int32MHz,

 PLLmul=4,

 prescB=1,

 prescC=1;

SysTick
= 10;

// {msec

StackSize
= $0032, iData;

FrameSize
= $0064, iData;

ADCrefA
= REF100;

// intern 1.0V reference, input pins at PortA, 4 channels

ADCprescA
= 256;

// prescaler 256

ADCchansA
= [0..7];

// 8 channels in use, using SysTick

ADCrefB
= REFextB;

// extern reference, input pins at PortB, 3 channels

ADCprescB
= 32;

// prescaler 32

ADCchansB
= [1];

// single channel, no SysTick used
3.25.2 Defines

ADCrefA, ADCrefB

These defines set the reference voltage source.

REF100
= internal 1.0Volt reference

REFintVCC
= internal reference VCC div 1.6

REFintVCC2
= internal Referenz VCC div 2

REFextA
= external reference at PortA

REFextB
= external reference at PortB

ADCprescA, ADCprescB

Required prescaler of the AD-converter. This value determines convertion time of the ADCs and also indirectly the resiliance to spikes and noise in the signal (4, 8, 16, 32, 64, 128, 256, 512).

As an option the desired resolution can be defined here:

ADCprescA
 = 4, 8;

// prescaler 4, resolution 8bits (8 or 12)
Without this parameter the resolution is always 12bit.
ADCchansA, ADCansB

Defines the channel count and also the associated port pins.

Possible Defines are:

ADCchansA
= [0..7];

// 8 channels in use PortA.0 .. PortA.7

ADCchansA
= [1..3];

// 3 channels in use PortA.1 .. PortA.3

ADCchansA
= [1, 3, 5, 7];

// 4 channels in use PortA.1, PortA.3, PortA.5, PortA.7

ADCchansA
= [0];

// 1 channel in use PortA.0

ADCchansA
= 1;

// 1 channel in use PortA.1

Please note that if more than 4 channels/pins are defined then the SysTick must also be imported!

3.25.3 Functions and Procedures
GetADC

Returns data of the ADC. Function to direct/indirectly read the ADC-channels.

ADC_A or ADC_B have to be imported. The passing parameter indicates the required channel (0..7). The result of the function is always an unsigned word.

Function GetAdcA(chan : byte) : word;

Function GetAdcB(chan : byte) : word;

The parameter chan must be in the range of 0..7. But if there are only 2 pins defined as inputs then chan must be in the range of 0..1. For example if the pins 2,4,5,7 are set as inputs then there is this relation:
Port.Pin2 > chan0

Port.Pin4 > chan1

Port.Pin5 > chan2

Port.Pin7 > chan3
Illegal values of chan will have a result of $0000.

w:= GetAdcA(0);
{read first channel}

w:= GetAdcB(3);

Restrictions with the XMegaE5 types:

More than one channel can only be defined with the [m..n] scheme:

ADCchansA
= [1..3];

// 3 channels in use PortA.1 .. PortA.3

ADC_B does not exist and then also no Defines for it.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\ XMEGA_ADC

3.26 DA-Converter XMega

3.26.1 DAC_A DAC_B

Defines and imports the DA-Converters. (as far as present in the chip).

The XMegas provide upto 2 separate DA-Converters. They are always connected to PortA and PortB and are named DAC_A and DAC_B. The settings are a resolution of 12bit and right justified.

Import SysTick, DAC_A, DAC_B;

From System Import ;

Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

 // possible OSC types: extXTAL, extClock, ext32kHz, int32Khz, int2MHz, int32MHz

 //>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

 OSCtype
= int32MHz, PLLmul=4, prescB=1, prescC=1;

 SysTick
= 10; {msec}

 StackSize
= $0032, iData;

 FrameSize
= $0064, iData;

 DAC_A
= chan01, REF100; // DAC_A channel 0 + 1 used

 DAC_B
= chan0, REFextB; // DAC_B channel 0 used
XMega “U” Typen:

 DAC_A
= chan1, REFextB; // DAC_A channel 1 only used
 DAC_B
= chan1, REFextB; // DAC_B channel 1 only used
3.26.2 Defines

DAC_A, DAC_B

Each DAC provides upto 2 channels, chan0 and chan1. If there is only one channel present or only one channel should be used so chan0 must be selected. If there are two channels and both should be used the chan01 must be defined. The second parameter defines the reference voltage source:

REF100
= internal 1.0Volt reference

REFaVCC
= external reference at AVCC pin

REFextA
= external reference at PortA

REFextB
= external reference at PortB

3.26.3 Functions and Procedures

SetDAC

Writes a new output value (12bit) into the DAC register. DAC_A or DAC_B \Relate "PASCAL.DOC!108", "ADCport" or both must be imported and defined.

Function SetDacA_chan0(val : word);

Function SetDacA_chan1(val : word);

Function SetDacB_chan0(val : word);

Function SetDacB_chan1(val : word);

SetDacA_chan0(0);

// write to DACA chan0
SetDacB_chan1(ww);

// write to DACB chan1
Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\ XMEGA_DAC
3.27 Real Time Clock

Some AVRs (4434, 8535, mega83, mega161, mega163, mega103 etc) feature a so called Real Time Counter, but which is not comparable with a RTC-Chip. It’s possible to build a Real Time Clock in software without much code size, provided that the CPU has an “ASSR“ register in the IO-area and also two pins to connect a watch quartz crystal. This is available in at least the above CPU-types. With CPU-types which don’t support an RTC (8515) or where the timers are in use for other jobs, with a minimal additional expense a precise RTC can be build with the help of the SysTick.

Our RTC has the functuality for adjusting time (hh:min:sec) and optional date (yy.mm.dd) and the corresponding readback functions. For the RTC-time it’s possible to implement so called CallBack functions. If implemented they are called each new second, minute or hour ticks.

With additional optional imports there is one or more Timer (DownCount Alarm) and an Alarm (time/date). Both supplementary functions also have a CallBack which calls the related procedure if an event occurs.

The RTC needs the ASSR register, the related timer (Timer0 or Timer2) and an external 32768Hz watch quartz. If the SysTick is used for the RTC the timer and quartz are not necessary.

As with all RTCs there is not only the precision problem but also setting the clock to the correct time and date. In Europe there is the DCF77 time transmitter which is always used for the initial setup of RTCs. The DCF77 driver of AVRco can be used for this. Please see the DCF77 documentation.

Imports

The driver must be imported as usual with AVRco.

Import SysTick, RTclock, ..;
If needed the optional event procedures must be imported.

From RTclock Import RTCtimer, RTCalarm;
The type of the RTC (Time-only or Date+Time) and also the memory location must be given with the Define:

Defines (mega103)

Define
ProcClock
= 6000000;
{Hertz}

SysTick
= 10 , Timer2;
{msec}

RTclock
= iData, Time;
{Time or DateTime}

As an option it is possible to import more than one timer channels

Define
RTCtimer = 4;
 {1..8 Channels}

As a replacement for the internal RTC channel:

Define
RTCsource = SysTick[, adj]; {optional}
Attention:

If the SysTick is selected as the RTC-source then the SysTick must fulfill certain conditions. The SysTick must not be lower than 1, it must be an integer number and 1000 / SysTick must not have a remainder (1000 mod SysTick = 0).

3.27.1 RTC-Functions/Procedures

Basic and implementation dependent procedures and functions.

Procedure RTCsetSecond (sec : byte);

Loads the seconds-register with the value “sec“

Procedure RTCsetMinute (min : byte);

Loads the minutes-register with the value “min“

Procedure RTCsetHour (hour : byte);

Loads the hours-register with the value “hour“

Procedure RTCsetDay (day : byte);

Loads the days-register with the value “day“. Only implemented if Define was used with “DateTime“.

Procedure RTCsetWeekDay (wday : byte); {0 = Monday}

Loads the weekday-register with the value “wday“. Only implemented if Define was used with “DateTime“.

Procedure RTCsetMonth (month : byte);

Loads the month-register with the value “month“. Only implemented if Define was used with “DateTime“.

Procedure RTCsetYear (year : byte);

Loads the year-register with the value “year“. Only implemented if Define was used with “DateTime“.

Attention: Adjusting the RTC should only be done with interrupts disabled!

Function RTCgetSecond : byte;

Reads the seconds-register

Function RTCgetMinute : byte;

Reads the minutes-register

Function RTCgetHour : byte;

Reads the hours-register

Function RTCgetDay : byte;

Reads the days-register. Only implemented if Define was used with “DateTime“.

Function RTCgetWeekDay : byte; {0 = Monday}

Reads the weekday-register. Only implemented if Define was used with “DateTime“.

Function RTCgetMonth : byte;

Reads the months-register. Only implemented if Define was used with “DateTime“.

Function RTCgetYear : byte;

Reads the year-register. Only implemented if Define was used with “DateTime“.

Attention: Reading of the RTC should only be done with interrupts disabled!

The three procedures below are the exported CallBack procedures. This means, if these are present in the source, they will be called at every second, minute or hour overflow. Pay attention that these functions are called directly from the Timer-Hardware-Interrupt.

As with all interrupt procedures only the few main working registers are saved (_ACCA/R16, _ACCB/R17 and the Z-register _ACCCLO/HI). Because of this only the above register can be used within this procedures. Otherwise additional registers must be saved manually by the programmer.

These procedures must be build in the application source!

Procedure RTCtickSecond;
{CallBack procedure}

Is called at every second overflow.

Procedure RTCtickMinute;
{CallBack procedure}

Is called at every minute overflow.

Procedure RTCtickHour;
{CallBack procedure}

Is called at every hour overflow.

3.27.2 Alarm-Procedures

If RTCalarm is imported an alarm function is exported which calls the CallBack procedure “RTCalarm“ if the preset Time or preset Time+Date is reached.

Procedure RTCalarm_Time (hour, min, sec : byte);

Loads the time-compare registers of RTCalarm. Compare function becomes stopped.

Procedure RTCalarm_Date (year, month, day : byte);

Loads the date-compare registers of RTCalarm. Only implemented if Define was used with “DateTime“. Compare function becomes stopped.

Procedure RTCalarm_Start (mode : byte); {mode 0= stop, 1= Time, 2= DateTime}

Starts or stops RTCalarm.

Procedure RTCalarm_Stop;

Stops RTCalarm.

Procedure RTCalarm;
{CallBack procedure}

Will be called at a compare-match, this means onetime at most.

This procedure must be build in the application!

3.27.3 Timer-Procedures

If RTCtimer is imported one or up to 8 timer function can be used which decrement the preset value by one at each second tick. If this value is zero the CallBack procedure “RTCtimer“ is called.

Procedure RTCtimer_Load (seconds : word[longword]);
// single timer defined

Procedure RTCtimer_Load (chan : byte; seconds : word[longword]);
// multiple timer defined

Loads the time-compare registers of RTCtimerX. Compare function becomes stopped.

If LongWord or LongInts are imported then seconds is a LongWord (32bits), otherwise it’s a Word (16bits).

Procedure RTCtimer_Start;
// single timer imported

Procedure RTCtimer_Start (chan : byte);
// multiple timer imported

Starts RTCtimer.

Procedure RTCtimer_Stop;
// single timer imported

Procedure RTCtimer_Stop (chan : byte);
// multiple timer imported

Stops RTCtimer.

Procedure RTCtimer;
{CallBack procedure}

Procedure RTCtimer (chan : byte);
{CallBack procedure}

This CallBack procedure is called once if the Downcounter = 0. The timer is then stopped.

This procedure must be build in the application!

Remarks:

The RTC must run with Timer0/2 Interrupt. If the interrupt is disabled more then a second the second gets lost for the RTC and the time gets wrong.

CallBack procedures are directly called from within the timer interrupt and there is only a minimal register saving. Because of this one must carefully inspect the generated assembler code in the callback procedure.

In doubt save additional registers (ASM) or write the procedure’s code with assembler.

CallBack procedures must be build by the programmer.

Procedure RTCtimer;
{CallBack procedure, only one timer imported}

Begin

 Elapsed:= true;

End;

Procedure RTCtimer(chan : byte);
{CallBack procedure, more than one timer imported}

Begin

 Elapsed:= true;

End;

Preset and Readback of RTC registers should be done with disabled interrupts! Otherwise the results can be faulty if an interrupt occurs whilst reading or writing.

DisableInts;

RTCsetSecond (x);

RTCsetMinute (y);

RTCsetHour (z);

EnableInts;

With all other operations (also RTCtimer_Load, RTCalarm_Time and RTCalarm_Date) a disabled interrupt is not necessary.

SysTick uses an 8bit timer and the RTC does. The timer for the RTC is fixed in the CPU. Because of this the SysTick must use the other 8bit timer of the CPU (Timer0 or Timer2).

If the RTC is driven by the SysTick “Define RTCsource = SysTick“ a Timer is not needed.

The optional parameter “adj“ in the definition of RTCsource = SysTick serves as a fine adjust for the RTC.

With repeatedly checking and changing this value (min –100, max +100) that correcting value can be found where the RTC’s error is a minimum. A precision of +/- 1sec/day is possible. A precise clock, at best a radio clock must be used for the adjusting process.

Example programs:

 examples are in the directories

 ..\E-Lab\AVRco\Demos\RTclock and ..\E-Lab\AVRco\Demos\RTC8564
3.28 I2C-Bus

3.28.1 I2CPORT

Defines and imports the I2C-Bus interface.

The I2C-Bus is software moderated implemented. The interface can only work as Bus-master. An eventually existing hardware-I2Cbus-interface is not used and is not supported.

If the I2Cport is imported by the Import clause, so the corresponding parallel-port and both required bits I2Cclk and I2Cdat have to be defined by Define. Both bits must reside in the same port. The portbits must be able to work bidirectional.

The import of the I2Cport automatically imports the library functions I2Cstat, I2Cinp and I2Cout. These functions do not only support single byte transfers, but also block transfers. The functions return a true or a false according to the result.

Import
SysTick, I2Cport;

Define
ProcClock
= 4000000;
{4Mhz clock }

SysTick
= 10;
{10msec Tick}

I2Cport
= PortB;
{use port B}

I2Cclk
= 0;

{clock-pin = port B bit 0}

//I2Cclk
= 0,NOPs
{NOPs1, NOPs2…NOPs10}

//I2Cclk
= 0, 2
{2x sDelay}

//I2Cclk
= 0, @myDel
{x sDelay} // myDel = variable which can be changed at runtime

I2Cdat
= 3;

{data-pin = port B bit 3}

I2Cclk

Defines the portpin 'Clock' of the port, which was specified by the I2Cport for the I2Cbus prosecution. The specified bit has to be switched as in- or output.. See also I2Cdat. Value 0..7.

The speed of the I2C-Bus can be set with additional optional Define parameter:

Define I2Cclk = PortBit, NOPs

"NOPs" is a either a constant value between 1..255 or a variable name. Both define the count of CPU-cycles which are inserted between each state change of the I2C data and clock line.

In case of the variable
it's possible to change the speed at runtime for the needs of the
different I2C chips.

In reality these NOPs are executed by a sDelay. This delay needs about 3 CPU cycles for one given value. If a value of 10 is given, then the result is about 30 CPU cycles. Instead of the constant or variable it is possible to give the NOP count directly:

Define I2Cclk = 0, NOPs3; // PortBit, 3 NOPs [0..10]
I2Cdat

Defines the portpin 'Data' of the port, which was specified by the I2Cport for the I2Cbus prosecution. The specified bit has to be switched as in- or output.. See also I2Cclk Value 0..7.

Alternatively the complete define can be given in one line:

Define
I2Cport = Port, DataPin, ClockPin[, NOPs]; // NOPs = optional parameter
Example:

Define
I2Cport = PortC, 2, 3, NOPs2;

Define
I2Cport = PortC, 2, 3, 2; // 2 sDelays into the clock delay, XMegas
3.28.2 Functions and Procedures

I2Cstat

The function I2Cstat establishes, if the chosen slave exists and is responding. In case of error the function returns as FALSE, otherwise the result is true. An EEprom, for example, ignores any further access for a while after it was written. In this case it would return a false. There are max. 255 tries until abort. In case of error the function return after ca. 6msec with a false.

Function I2Cstat (SlaveAdr : byte) : boolean;
The parameter SlaveAdr can be a byte variable or a 8-bit constant. According to the definition the 8th Bit of the address is the Read-Write Bit and because of that it is overwritten or ignored by the function. This address is the physical module address of the I2C-Bus.

I2Cinp

The function I2Cinp reads at least one byte of the chosen slave. If the try fails (TimeOut), the function returns with the result FALSE, otherwise the result is TRUE. There are max. 255 tries until the abort. In case of error the function returns after ca. 6msec with false.

Function I2Cinp (SlaveAdr : byte; var Data) : boolean;

The parameter SlaveAdr can be a byte variable or an 8-bit constant. According to the definition the 8th Bit of the address is the Read-Write bit and because of that it is overwritten or ignored by the function. This address is the physical module address of the I2C-Bus. Module-inter addresses (e.g.. EEprom) have to be adjusted with a write by a I2Cout.

The variable Data has to be defined as a variable, whereby the type of the variable is arbitrary. The SizeOf(Data) or the number of occupied memory locations also determine the number of bytes, which are read within the block and are passed to the variable data. With a byte, char or boolean it is 1 byte, with a word or integer it is 2 bytes, whereby the lower byte is read before the high-byte.

If Data is a type of array, so the length of the array is established and a corresponding number of bytes is read, starting with the lowest address of the array (lowest index).

If the Data is a string, the max. possible length of the string is established and a corresponding number of bytes is read, starting with the index string[0]. That means, that a string is always read and written incl. length byte. At reading the length byte determines the number of the bytes, which have to be read. But the max. length of the destination string will not be exceeded.
Attention:

By choosing the data variable pay attention, that the slave is able to handle a corresponding length of a blocktransfer. An I2C module, which only consists of an 8-bit parallel port, is generally able to transfer one byte.

I2Cout

The function I2Cout writes at least one byte into the choosen slave. If the try fails (TimeOut), the function returns with the result FALSE, otherwise the result is TRUE. There are max. 255 tries until the dropout. In case of error the function returns after ca. 6msec with false.

Function I2Cout (SlaveAdr : byte; Command : byte|word [; Data]) : boolean;
The parameter SlaveAdr can be a byte variable or an 8-bit constant. According to the definition the 8th Bit of the address is the Read-Write bit and because of that it is overwritten or ignored by the function. This address is the physical module address of the I2C-Bus.

The parameter Command is depending on the slave, but has to be specified. It could be a byte variable, an 8-bit constant or a word. Often this command is a module-intern address (e.g. EEprom)

Bigger EEproms (>256 bytes) have a 16-bit address. Because it would not make sense to implement special library functions, the function I2Cout must be informed, if the address parameter (2nd parameter) consists of one or two bytes, so if it is 8- or 16-bits long. Because of this the parameter has to be definite and has to be declarated that way.

{ eeprom 8kBytes 24C65 }

Var w : word;

{ 16 bit adr }

w:= 0000;

b2:= 0;

bool:= I2Cout ($50, w);
{ set adr for read = 0000 }

while b2 < $FF do
{ read eeprom with adr auto incr}

 bool:= I2Cinp ($50, b1);
{ result into b1 }

 inc (b2);

endwhile;

For components, which possess an additional intern address, for example EEproms and AD-converter, the required reading-address has to be put out by a write-access before reading. The next reading-access then goes to this address. If the module possesses an auto-increment of the address (ADC, EEprom), it can be read continuous, without an output of a new address.

{ eeprom 256*8bit PCF8582E }

Var b2 : byte;

{ 8 bit adr }

B2:= 00;

bool:= I2Cout ($53, b2);
{ set adr for read = 00 }

while b2 < $FF do
{ read eeprom with adr auto incr}

 bool:= I2Cinp ($53, b1);
{ result into b1 }

 inc (b2);

endwhile;

The variable Data is optional and can be an 8- or 16-bit constant or any variable or constant. This parameter is optional and can, but must not exist. The slave and/or the required slave-action determines the type or omitting of data. The SizeOf(Data) or the number of the memory locations, which are occupied by this variable or constant, determine the number of bytes, which are read out of the variable within the block and written into the slave. With a byte, char or boolean it is 1 byte, with a word or an integer it is 2 bytes, whereby the lower byte is written before the high-byte.

If the result is a type of array, so the length of the array is established and a corresponding number of bytes is written, starting with the lowest address (lowest index) of the array.

If the Data is a type of string, the length of the string is established and a corresponding number of bytes is written, starting with the index string[0]. That means, that a string is always read and written incl. length byte. Within writing, the length byte determines the number of the bytes, which have to be written:

Count := length(string).

If the parameter data was not specified, only the command byte is transferred.

Attention:

By choosing the data variable/constant pay attention, that the slave is able to handle a corresponding length of a blocktransfer. An I2C module, which only consists of an 8-bit parallel port, is generally able to transfer one byte.

3.28.3 The I2C-BUS Interface

The I2C interface is an international standardized, synchrone serial interface for the connection of periphery-modules to a processor as well as for the communication of processors. This implementation mainly supports the used master-slave configuration, the CPU is the master and the connected module is the slave.

Several slaves can be connected, whereby every slave possesses a special intern address, which should appear only once in the so called net. Theoretically more than 100 modules can be prosecuted, so you could talk about a network. The variant with 10-bit addresses is not supported.

The connection with each other is made by two control lines: Data and Clock. These both lines are bi​directional, so they work in both directions. Because of that the designated port and/or the used pins have to be switchable into the respective data direction or it must possess a TRI-State function. Each of the both lines must have external pull-up resistors of 10..50kOhm to +5Volt.

The I2C-interface, which is imported by I2Cport and defined by I2clk and I2Cdat offers the three high-level functions I2Cstat, I2Cinp and I2Cout. These functions are generalized, i.e. they are not depending on a special chip. The programmer can and/or has to observe the software protocol of the slave, by a corresponding use and parameters, whereby the telegram protocol (Hardware-Address, Clock-Generation etc) is realized by the library driver.

All functions detect if the slave exists and is ready or if it not exists or is BUSY. If the function failed, a FALSE is returned, otherwise a TRUE.

Both transfer-functions offer the possibility of reading and writing. The type of the parameter data automatically determines the block length. Further information see I2Cinp and I2Cout.

3.28.4 Multi-Processing and I2C

In an application with Processes and/or Tasks in many cases the I2C-Bus is not only used as a network but also for other purposes (LCD, Ports etc). If so, then different processes access the I2C, and severe conflicts are inevitable because such sequential drivers (I2C, TWI, UART etc) are not re-entrant, i.e. they are not interruptible and cannot re-entered. Because of this the I2C port works with a semaphore of the type DeviceLock.

I2C_DevLock : DEVICELOCK;
The I2C driver observes and controls this semaphore. On entry into the driver the semaphore is checked as to whether the driver is locked or not. If it is free the semaphore becomes activated (driver locked) and the job will be executed. After finishing the job the semaphore is released (unlocked).

If the driver is locked (occupied) at entry time then a Schedule is executed and the calling Process is put into the Schedulers queue. With one of the next few schedulings this process is restarted and again checks this semaphore. This is repeated until the semaphore becomes free (unlocked).

Attention:
Because of the suspension of a I2C access through “Schedule“ Tasks should not use I2C accesses. A schedule completely aborts and exits a Task and so a job will not be executed if a locked semaphore is found.

It is possible to set a flag to determine if the Task solved the job successfully. If the flag is not set the Task must again be initiated to repeat this job. But this is somewhat complicated and should be avoided.

Import
SysTick, I2Cport;

Define
ProcClock
= 4000000;

{4Mhz clock }

SysTick
= 10;

{10msec Tick}

2Cport
= PortB;
{use port $05}

I2Cclk
= 0;

(clock-pin = port B bit 0}

I2Cdat
= 3;

(data-pin = port B bit 3}

Var
ar1
: array[1..4] of byte;

b
: byte;

bool
: boolean;

 {adr 0 adjust to read}

 if not I2Cout (%01010000, $0) then
{EEprom select, intern adr 0}

 Error;

 else
{read}

 bool:= I2Cinp (%01010000, b);
{EEprom select, read adr 0 -> b}

 endif;

{read a block, EEprom decrements autom. Adr.}

bool:= I2Cinp (%01010000, ar1);
{EEprom select, read adr 1..4 -> ar1}

{EEprom write operation}

if not I2Cout ($50, $0, b) then

{EEprom select, intern adr 0, Byte b prog}

 Error;

else
{write block}

 bool:= I2Cout ($50, 1, ar1);

{EEprom select, ar1 -> EEprom-adr 1..4 prog}

endif;

{wait for ok examples}

while not I2Cstat(...) do
 ...;

 ...;

endwhile;

repeat

 ...;

 ...;

until I2Cstat(...);

3.29 I2Cexpand Driver for up to 8 bidirectional Ports

Basics

With some control applications and with a specific CPU used the useable IO-pins are not sufficient especially if two ports must be used for external RAM.

So a larger CPU (pin count) must be used or the current port pins must be expanded with additional hardware. There are several possibilities to implement such an expansion. Real IO-chips like the 8255 often can’t be used because they need a parallel connection (at least 10bits) to the CPU and there are only 20 additional pins. Standard latches must also be connected in parallel and therefore also need many additional Pins of the CPU so the pin saving is less than expected.

If the IO-speed doesn’t matter too much but the count of additional pins is high, the simple way is to implement external ports based on the I2C bus system which solve the problem very well.

There are many freely programmable remote-IO port chips available for the I2C bus (TWI). The Philips chips PCA9554 or PCA9554A are suitable very well. These contain a PORT-register, a PIN-register and a DDR-register. So they are absolute equivalent to an AVR port. Up to 8 devices can be connected to the bus.

Introduction to the I2Cexpander

This implementation either uses the software I2C-driver (I2Cport) or the internal TWI (I2C) port of the AVR mega CPUs. To use the I2Cexpander either the driver I2Cport or the driver TWImaster or the driver TWInet must be imported, the latter in Mastermode. With XMegas one of these TWIs must be used/imported:
TWI_C, TWI_D, TWI_E or TWI_F.

As the I2C port-expander one PCA9554A from Philips must be used for one port. This chip can be present up to 8 times on the I2C bus. The PCA9554A can run up to 400kBit/sec on the I2C Bus. In contrary to its predecessors the 8bit port can be directly read, written or reprogrammed without any influence to the other parts of the chip.

The base address of the PCA9554A is $38..$3F. The PCA9554A can be replaced by the PCA9554 which base address is $20..$27. But these addresses are reserved for 16bit I2C-devices of type PCA9555 in the AVRco system. So the PCA9554 should only be used in special cases.

The possible ports are named PORT0…PORT7, PIN0…PIN7, DDR0…DDR7

where PORT0/PIN0/DDR0 has the I2C-address $38, PORT1/PIN1/DDR1 has the I2C address $39 etc.

As a specialty these I2C chips can invert the polarity of the input pins. To handle this the special ports INP_POL0..INP_POL7 are exported. A log1 inverts the corresponding input bit.

3.29.1 Technical Data

I2C Port

Software I2C imported by I2Cport

or

CPU-TWI imported by TWImaster

// Mega

or

CPU-TWI imported by TWInet in Mastermode

// Mega

or

CPU-TWI imported by TWI_C, TWI_D, TWI_E oder TWI_F
// XMega
Hardware

I2C I/O-Expander chip PCA9554A from Philips, 1 piece per port

I2C addresses
The PCA955A reside at the bus-addresses $38..$3F

where PORT0 has the address $38, PORT1 has $39 etc.

The PCA9554 reside at the bus-addresses $20..$27 where PORT0 has the address $20,

PORT1 has $21 etc.

The PCA9555 have three address pins or bits which must be wired in a correct way.

Imports

As usual with the AVRco system the driver must be imported and defined. In addition the desired I2C/TWI driver must be imported and defined.

The SysTick is not used.

Import I2Cport, I2Cexpand;

or

Import TWImaster, I2Cexpand;

or

Import TWInet, I2Cexpand;

// use Master mode

XMega

Import TWI_C, I2Cexpand;

// use TWI_C

Defines

Dependent of the I2C or TWIport, this must be defined.

Example for I2Cport:

Define ProcClock
= 8000000;
{8Mhz clock }

 I2Cport
= PortC;
{port used}

 I2Cdat
= 7;
{bit7-PortC}

 I2Cclk
= 6, 4;
{bit6-PortC, optional delay 4}

 I2Cexpand
= I2C_Soft, $38;
{use Software I2Cport, 9554A}

 I2CexpPorts
= Port0, Port4;
{use Port0 and Port4}

Example for TWImaster:

Define ProcClock
= 8000000;
{8Mhz clock }

 TWIpresc
= TWI_BR100;
{100kBit/sec alt. TWI_BR400}

 I2Cexpand
= I2C_TWI, $38;
{use TWIport, 9554A}

 I2CexpPorts
= Port1, Port2;
{use Port1 and Port2}

Example for TWInetMaster:

Define
ProcClock
= 8000000;
{8Mhz clock }

TWInode
= 05;
{default address in slave mode}

TWIpresc
= TWI_BR400;
{400kBit/sec alt. TWI_BR100}

TWIframe
= 4, iData;
{buffer/packet size}

TWIframeBC
= 6;
{option broadcast buffer/packet size}

TWInetMode
= Master;

I2Cexpand
= I2C_TWI, $20;
{use TWIport, 9554}

I2CexpPorts
= Port7;
{use Port7}

Example for XMega:

Import TWI_C, I2Cexpand;

 // use TWI_C, TWI_D, TWI_E or TWI_F

Define

 OSCtype = int32MHz, PLLmul=4, prescB=1, prescC=1;

TWIpresc
= TWI_BR100;
{100kBit/sec alt. TWI_BR400}

 I2Cexpand
= TWI_C, $38;
{use TWIportC, 9554A}

 I2CexpPorts
= Port1, Port2;
{use Port1 and Port2}

I2Cexpand

Requests the I2C-port to use, either software-I2C with I2C_Soft or onchip TWIport with I2C_TWI.

The required basic driver must also be imported and defined.

The second parameter defines the I2C-chip: $20 for the PCA9554 or $38 for the PCA9554A.

I2CexpPorts

Defines which and how much ports must be supported. Valid defines are: Port0 ... Port7.

3.29.2 Types and Functions

The import of I2Cexpand exports a special type:

Type TI2CPORT = internal;

This type can be used to rename a ports and give it a more relevant name. Example:

Var myName[@Port1] : TI2Cport;

Now myName can be used to access the Port1.

I2CexpStat

At power-up it makes sense to check the ports for a correct connection and working. To do this, the I2C-state of a port can be checked.

Function I2CexpStat (Port: TI2Cport) : boolean;
This function returns a true if the select of the PCA9554 chip was successful.

With the programs context such a port can be handled in the same way as a normal port of the AVR. But there are some restrictions. The port can not be addressed by pointers. It can not be a part of a construct like an array or record. It can not be procedure-local and also can not be passed as a parameter to procedures/functions. The only special operation is inc(port) and dec(port).

The bit by bit addressing of the port bits is possible. Then the bits must be overlaid over a port.

Var iBit1[@Port2, 1] : bit;

Now single bits can be addressed and manipulated:

if not iBit1 then
 iBit1:= true;

 iBit1:= false;

 toggle (iBit1);

endif;

The same or similar is also true with the standard AVR ports.

3.29.3 Multi-Processing and TWI Port
In an application with Processes and/or Tasks in many cases the TWI-Bus is not only used as a network but also for other purposes (LCD, Ports etc). If then different processes access the TWI heavy conflicts are build in because such sequential drivers (I2C, TWI, UART etc) are not re-entrant, i.e. they are not interruptible and can not re-entered. Because of this the TWI port works with a semaphore of the type DeviceLock.

TWI_DevLock : DEVICELOCK;

TWI_DevLockTN : DEVICELOCK; // XMega TN = C, D, E or F
The TWI driver observes and controls this semaphore. At the entry into the driver the semaphore is checked whether the driver is locked or not. If it is free the semaphore becomes activated (driver locked) and the job will be executed. After finishing the job the semaphore becomes released (unlocked).

If the driver is locked (occupied) at entry time then a Schedule is executed and the calling Process is put into the Schedulers queue. With one of the next few schedulings this Process is restarted and again checks this semaphore. This is repeated until the semaphore becomes free (unlocked).

Attention:
Because of the cancellation of a TWI access through “Schedule“ Tasks should not use TWI accesses. A schedule completely aborts and exits a Task and so a job will not be executed if a locked semaphore is found. It is possible to set a flag if the Task executed the job successfully. If the flag is not set the Task must again be initiated to repeat this job. But this is somewhat complicated and should be avoided.

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\I2Cexpand

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_I2Cexpand

[image: image29.png]=lolx|
EiZBZu + |8 S -
A& |D|a|0|G|® &le(t|s|a|«|FE
L |m|m - =|=|=(=(mmm ||
Mol e e ool ol a] L] [E] 2]
hatl DS LI A Gl =4l
I e I -4 2
b I O A T I I

7] copy to ClipBoard BRI AR A R R

ClipBoard cantent

#0

400 A AN

& clear ClipBoard

ClipBoard contains 1 special characters

£ view ClipBoard

schematic I2Cexpand

3.30 Pulse Counter driver PulseCount

Not for XMegas
Simple and event/pulse counter can be build by continously watching of a port pin which can be done in a task for example. If these events follow with short time delays so it makes sense to use an interrupt pin and then increment a variable with each interrupt. But then with high speed pulses the system is heavily loaded with interrupts and with interrupts also disabled for a short time pulses maybe lost.
In general but also especially with high speed pulses it is better to use an internal 16bit counter for this job. The advantage hereby is that these counters running completely self contained and the system is only minimal burdened with interrupts. Most of the 16bit counters provide an external clock input pin which must be used to connect the external pulse source. The application the must take care that this pin is always set as an input pin. For a correct function of the driver the global interrupt must be enabled.

The counter increments with each rising edge of the clock input pin. If an overflow of the 16bit counter occurs the counter wraps to 0 and rises an overflow interrupt. In this interrupt service then a 16bit variable is incremented by 1. Reading the PulseCount result then returns a longword (32bit) which consists of the counter content and the variable. Upto two counter channels can be imported and defined.

Imports

As usual with AVRco the driver must be imported.

Import SysTick, PulseCount, { PulseCount2} ..;

The necessary 16bit timer/counter must be defined:

Defines
Define

ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0010, iData;

FrameSize
= $0010, iData;

PulseCount
= Timer1;
{or Timer3..5 if present}

// PulseCount2 = Timer3;
{or Timer3..5 if present}

3.30.1 Functions
The driver provides 4 functions per channel:

Function GetPulseCount : longword;

Function GetPulseCount2 : longword;

This function returns the actual internal counter value. The internal value is not changed and the counter is not stopped. Continously polling this function should be avoided because of the inherited temporary interrupt disable in this function which can result in a slowdown of the entire interrupt system.

Procedure PulseCountStart;

Procedure PulseCountStart2;

This procedure starts the counter. This is necessary after a program Start, a Stop or Clear.

Procedure PulseCountStop;

Procedure PulseCountStop2;

This procedure stops the counter without changing the internal counter.

Procedure PulseCountClear;

Procedure PulseCountClear2;

This procedure stops the counter and clears it to 0.

3.31 Pulse Counter driver PulseCount XMega

Simple and event/pulse counter can be build by the use of an internal 16bit counter. These counters are running completely self contained and the system is only minimal burdened with interrupts. All of the 16bit counters provide an external clock input pins which must be used to connect the external pulse source. The application the must take care that this pin is always set as an input pin. For a correct function of the driver the global interrupt must be enabled.

The counter increments with each rising or falling edge of the clock input pin. If an overflow of the 16bit counter occurs the counter wraps to 0 and rises an overflow interrupt. In this interrupt service then a 16bit variable is incremented by 1. Reading the PulseCount result then returns a longword (32bit) which consists of the counter content and the variable. Upto 8 counter channels (C0..F1) can be imported and defined.

Imports

Import SysTick, PulseCount_C0, { PulseCount_C1, PulseCount_D0} ..; // C0..F1 counters
Defines
Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

 // possible OSC types: extXTAL, extClock, ext32kHz, int32Khz, int2MHz, int32MHz

 //>> CPU = 32MHz, PeripherX4=32MHz, PeripherX2=32MHz

OSCtype
= int32MHz,

PLLmul
= 4,

prescB
= 1,

prescC
= 1;

SysTick
= 10;
{msec}

StackSize
= $0060, iData;

FrameSize
= $0080, iData;

PulseCount_C0
= PortA, 0, PullUp;
// clock input Port, Pin, Pullup/PullDown/None

PulseCountEv_C0 = 0;
// event channel to be used

Each of the Ports A..F and every Pin of these Ports can be used. One of the 8 Event Channels must be used.
3.31.1 Functions

The driver provides 4 functions per channel where XX stands for the timer/channel used, C0..F1:

Function PulseCountRead_XX : longword;

This function returns the actual internal counter value. The internal value is not changed and the counter is not stopped.

Procedure PulseCountStart_XX;

This procedure starts the counter. This is necessary after a program Start, a Stop or Clear.

Procedure PulseCountStop_XX;

This procedure stops the counter without changing the internal counter.

Procedure PulseCountClear_XX;

This procedure stops the counter and clears it to 0.

Example program:

A sample program is in the directory ..\E-Lab\AVRco\Demos\XMega_PulseCount
3.32 Incremental Encoder Driver IncrPort

Not for XMegas, use QDEC instead
Positions, movements or rotation directions are often controlled by so called Incremental Encoders. These are mechanical or optoelectronic devices, which supply 2 or 3 digital signals shifted by 90(120)degrees. With the help of these it’s possible to find out the rotation direction or the direction of a move, and by counting the edges of all signals a relative position can be found out. If there is a Null-Point signal it is possible to count in absolute positions.

This implementation needs one (two) XOR-gates, which sum all signals and feed one input of the Analog Comparator of the AVR. The other input of the ACOMP is fixed to 50% VCC. This circuit allows each edge of all signals to generate an interrupt which implements four times higher resolution of the input (Quadrature). This signal establishes a fast pulse counting, but direction information is not build in.

The direction of the sensor can be found out by checking the phase relation of the input signals. All lines must be connected to any input port of the AVR. The lines must be connected to the same port in a consecutive order. The port pins are arbitrary, but must be useable as inputs.

Imports

The driver must be imported as usual with AVRco.

Import SysTick, IncrPort, ..;

The resolution (16 or 32bits, 2 or 3 phases), the desired port and the two (three) portpins must be defined:

Defines
Define

ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0010, iData;

FrameSize
= $0010, iData;

IncrCounter
= 16, 2;

{16 bit integer, 2 phases}

IncrPort
= PinD, $C0;
{PinD, Portpin 6 + 7}

3.32.1 Functions

There are 4 different functions exported:

Function GetIncrementVal : integer [longint];

This function returns the actual internal counter value as an integer if a 16bit counter is defined. The result is a longint if a 32bit counter is defined. The internal value is not changed with a read out.

Function GetIncrementRel : integer [longint];

This function returns the actual internal relative counter value as an integer if a 16bit counter is defined. The result is a longint if a 32bit counter is defined. The returned value is relative to the last call of this function. If there was no count pulse since the last call a zero is returned. If this function is called with fixed intervals it is possible to use the value to get a speed or rotate information.

Procedure ClearIncrementVal;

This procedure resets the absolute and relative internal counter.

Procedure SetIncrementVal (val : integer [longint]);
This procedure resets the absolute internal counter to “val”.

Remarks:

This driver is interrupt controlled. If the general interrupt is disabled even for a short time incorrect results are possible.

Example program and schematic:

[image: image30.png]O

E—LAB XMEGA—IRDA REV1 13/2011

an example is in the directory ..\E-Lab\AVRco\Demos\Increment

schematic Increment
3.33 Incremental Encoder Driver IncrPort4

The previously introduced driver uses the Analogue Comparator and therefore only supports one encoder. A more common implementation is the IncrPort4 driver which supports up to 4 encoder channels. It uses a timer and an 8bit port. External logic is not necessary, but there is no zero position recognition.

This implementation uses any input port which is able to connect up to 4 of 2-phase encoders. All encoders must be connected to the same port. Encoder-0 is connexted to portx.0 and portx.1, encoder-1 to portx.2 and portx.3 etc. The portpins used must be set as inputs. The four-folding of the input lines (quadrature) is always active.

Unused port pins can be used in any way.

The driver uses the cyclical timer interrupt for channel scanning and analysing. In order to get stable results the scan rate should be at least 4 times the max. expected pulse rate of the encoders. On the other hand a scan rate much higher than necessary wastes processing power and can slow down the system dramatically. Also a continuous polling of the channels by the application can result to problems with the interrupt system because each read access implies a short interrupt disable.

Imports

The driver must be imported as usual with AVRco.

Import SysTick, IncrPort4, ..;
The resolution (16 or 32bit), the desired port (PIN), the number of encoders, the time and the scan rate have to be defined:

Defines

Define

ProcClock
= 16000000;
 {Hertz}

StackSize
= $0020, iData;

FrameSize
= $0040, iData;

IncrPort4
= PinA, 2, 32;
 // pin-reg used, channels, 16 or 32bit integer

IncrScan4
= Timer3, 10;
 // timer used, scan rate 10kHz (1..100)

3.33.1 Functions

There are 7 different functions exported. The parameter chan counts from 0 (0..3).

Procedure IncrCount4start;

After a Reset or PowerOn the Scan-Timer does not run. It must be started with this procedure. This procedure does not change any counter states.

Procedure IncrCount4stop;

The Scan-Timer can be stopped and no interrupts will be generated by the timer. The counter states are not changed.

Function GetIncrVal4 (chan : byte) : integer [longint];

This function returns the actual internal counter value of chan as an integer if a 16bit counter is defined. The result is a longint if a 32bit counter is defined. The internal value is not changed by a read out.

Function GetIncrRel4 (chan : byte) : integer [longint];

This function returns the actual internal relative counter value of chan as an integer if a 16bit counter is defined. The result is a longint if a 32bit counter is defined. The returned value is relative to the last call of this function. If there was no count pulse since the last call a zero is returned. If this function is called with fixed intervals it is possible to use the value to get a speed of rotate information.

Procedure ClearIncrVal4 (chan : byte);

This procedure resets the absolute and relative internal counters of chan.

Procedure ClearIncrAll4;

This procedure resets all absolute and relative internal counters.

Procedure SetIncrVal4 (chan : byte; val : integer [longint]);
This procedure resets the absolute internal counter at chan to “val”.

Remarks:

This driver is interrupt controlled. If the general interrupt is disabled too long faulty results are possible.

If the parameter chan is passed by the functions it is always compared to the channel count defined with IncrPort4. If this value is out of range the function does nothing and returns a zero if necessary.

The channel parameter chan counts from zero.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\ Increment4
3.34 UP/DOWN Counter Driver XMega

A basic method to sample mechanical position is a simple Up-Down counter. In contrast to the increment counter there is a pulse input and a direction input.

This implementation uses one of the upto 8 XMega Timers. The two necessary inputs (clock, dir) can be in any port (PortA..PortF). With a resolution of 16bit (Integer) only one of the 8 Event Channels are used. With 32bit (LongInt) an additional interrupt is used. The input lines must be connected to the same port. The port pins can be arbitrary.

Imports

The driver must be imported as usual with AVRco.

Import SysTick, UPDWN_C0, ..; // UPDWN _C1, UPDWN _D0, UPDWN _D1, UPDWN _E0
Where C0, C1, D0, D1 etc. select the desired Timer. The “XX” stands for the selected timer.
The resolution (16 or 32bits), the desired port, the two portpins and the event channel must be defined:

Defines
Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

 // possible OSC types: extXTAL, extClock, ext32kHz, int32Khz, int2MHz, int32MHz

 //>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

 OSCtype
= int32MHz,

 PLLmul=4,

 prescB=1,

 prescC=1;

 SysTick
= 10, adj;
// msec, correct the RTC32K timer for exact mSec timing

 StackSize
= $0064, iData;

 FrameSize
= $0064, iData;

 UPDwnClkDir_C0
= PortD, 0, 1; // Port, clock, dir input pin

 UpDwnRes_C0
= 16;
// Resolution UPDWN_C0, 16 or 32
 UpDwnEvChan_C0 = 0;
// 0..6
In the following context the Defines, Functions and Procedures are marked with XX. The XX stands for the UpDwn UpDwn_C0..QDEC_F1) and for the Timer channel (C0..F1).

UPDwnClkDir _XX
defines the Port to use (PortA..PortF) and its two Pins.

UpDwnRes _XX
defines the resolution, 16 or 32 bits.

UpDwnEvChan _XX
defines the necessary Event Channel, 0..6.

Two consecutive channels are used.
3.34.1 Functions

There are 4 different functions exported:

Procedure UPDWNenable_XX(ena : boolean);

This procedure starts or stopps the internal counter. The actual counter value is not changed.

Function UPDWNgetPos_XX : integer [longint];

This function returns the actual internal counter value as an integer if a 16bit counter is defined. The result is a longint if a 32bit counter is defined. The internal value is not changed with a read out.

Procedure UPDWNclearpos_XX;

This procedure resets the internal counter. The counter ist stopped and must be re-enabled.
Procedure UPDWNsetPos_XX(val : integer [longint]);
This procedure resets the absolute internal counter to “val”. The counter ist stopped and must be re-enabled.
The direction and the change speed can be found out by reading the current counter value and comparing it with the last one. This must be done in a fixed time interval.

Remarks:

This driver is interrupt controlled when a 32bit resolution is used. If the general interrupt is disabled for a time then incorrect results are possible.

Example program:

A sample program is in the directory ..\E-Lab\AVRco\Demos\XMega_UpDownCount
3.35 QDEC Incremental Encoder Driver XMega

Positions, movements or rotation directions are often controlled by so called Incremental Encoders. These are mechanical or optoelectronic devices, which supply 2 digital signals shifted by 90degrees. With the help of these it’s possible to find out the rotation direction or the direction of a move, and by counting the edges of all signals a relative position can be found out.

This implementation uses one (two) of the upto 8 XMega Timers. The two necessary Phase inputs can be in any port (PortA..PortF). With a resolution of 16bit (Integer) only two of the 8 Event Channels are used. With 32bit (LongInt) one additional timer and two additional event channels are used. The driver works in quadrature mode. The lines must be connected to the same port in a successive order. The port pins are arbitrary.

Imports

The driver must be imported as usual with AVRco.

Import SysTick, QDEC_C0, QDEC32_F1, ..; // QDEC_C1, QDEC_D0, QDEC_D1, QDEC_E0
Where C0, C1, D0, D1 etc. select the desired Timer. The import QDEC_xx or QDEC32_xx defines the resolution, 16 or 32 bits.

The desired port, the two portpins and the event channels must be defined:

Defines
Define

 // The XMegas don't provide any Oscillator fuses.

 // So the application must setup the desired values

 // possible OSC types: extXTAL, extClock, ext32kHz, int32Khz, int2MHz, int32MHz

 //>> CPU=32MHz, PeripherX4=32MHz, PeripherX2=32MHz

 OSCtype
= int32MHz,

 PLLmul=4,

 prescB=1,

 prescC=1;

 SysTick
= 10;
// msec

 StackSize
= $0064, iData;

 FrameSize
= $0064, iData;

// 16 bit resolution

 QDECphase_C0
= PortD, 0, 1; // Port, Phase0, Phase90 input pin

 QDECevChan_C0 = 0;
// 0, 2, 4 or 6
// 32 bit resolution

 QDECphase_F1
= PortE, 4, 5; // Port, Phase0, Phase90 input pin

 QDECevChan_F1 = 2;
// event channel 0, 2, 4 or 6

 QDECcntHi_F1 = TCC1, 5, 6;
// Timer, two event channels
In the following context the Defines, Functions and Procedures are marked with XX. The XX stands for the QDEC (QDEC_C0..QDEC_F1) and for the Timer channel (C0..F1).

QDECphase_XX
defines the Port to use (PortA..PortF) and its two Pins.

QDECevChan_XX
defines the necessary Event Channel, 0, 2, 4 or 6.

QDECcntHi_XX
32bits, defines the necessary additional timer and two event channels
3.35.1 Functions

There are 4 different functions exported:

Procedure QDECenable_XX(ena : boolean);

This procedure starts or stopps the internal counter. The actual counter value is not changed.

Function QDECgetPos_XX : integer [longint];

This function returns the actual internal counter value as an integer if a 16bit counter is defined. The result is a longint if a 32bit counter is defined. The internal value is not changed with a read out.

Procedure QDECclearpos_XX;

This procedure resets the internal counter.

Procedure QDECsetPos_XX(val : integer [longint]);
This procedure resets the absolute internal counter to “val”.

The direction and the change speed can be found out by reading the current counter value and comparing it with the last one. This must be done in a fixed time interval.

Remarks:

The event channels oft he basic timer must start at even addresses. Two channels are used. The event channels oft he additional (32bit) timer should be in a consecutive order.

Example program:

A sample program is in the directory ..\E-Lab\AVRco\Demos\XMega_QDEC
3.36 Stepper-Motor

3.36.1 Fundamentals

Using stepper motors one can easily design precise and fast positioning and transport actuators. Of all of this kind of motor systems the stepper motor system is the cheapest type. However this drive also has a significant disadvantage: stepper motors are synchron motors and these have the problem of falling out of synchronization, they stop or, which is also a dangerous behavior, they lose steps. Under practical conditions one must observe the start step rate, the acceleration and the maximum step rate. These parameters depend on the motor type, the operation mode (full/halfstep etc), the power output stage, the inertia of the system and in general on the load and friction losses.

Only stepper motors with 2 coils are supported (2-phase motors).

The developer must know the advantages and disadvantages of the various power driver types and also the operation modes of the stepper motor. Tutorials etc. about these topics can be downloaded from the homepages of Ericsson and ST. It cannot be the target of this manual to make a stepper motor workshop, but here are some explanations:

3.36.1.1 ConstantVoltage Operation

This is the simplest way and can be implemented with 4 transistors. But the motor must be suitable; that means coil resistance > 10 ohms. Only full or halfstep is possible as the operation mode. The start step rate is relatively low and also the possible max. step rate. Motor and system resonances are a big problem.

3.36.1.2 ConstantCurrent Operation

This mode is costly, but has the advantage that the higher the step resolution is (e.g. sine current mode with “StepMicro8“), the lower is the risk of getting into resonance problems. In addition the motor runs smoothly like a DC-motor, including at low steprates.

A disadvantage is that both the software and the hardware driver must work with a 6..8fold speed (StepMini6, StepMicro8). In addition the necessary acceleration table in the ROM must also be prepared to include the much higher steprate.

The result is that the lookup table size instead of 1..2kByte (Full/Halfstep) now increases to 8..10kByte. At a steprate of 10Khz the used 16bit timer runs with a 100usec interrupt. With an AVR at 8Mhz there is a computing time of appr. 30usec to get the next step. This is ca 30% of the whole time. Also other interrupts are disabled during this time. If there are other interrupts implemented, the interrupt time of them must be small to avoid a frequency -jitter and consequent step losses.

3.36.1.3 Limitations

From the above explanations one can see that with the lookup table size in ROM and the time consumption of the interrupt the CPU can’t be burdened with large additional jobs, because:

The higher the step resolution, the higher the necessary steprate, the larger the lookup table and the higher the computing time consumption.

With the AVR the CPU should run with 8MHz in order to obtain the parameter values and/orsteprates in reality. A fixed internal resolution is obtained by a fixed prescaler (div 8) for the used Timer1, which is the base for all other internal calculations.

3.36.2 Acceleration Ramp

In order to have no step losses or to get out of synchronization, a stepper motor must be accelerated and decelerated linearly (Hz/sec). This ramp can be calculated in realtime or readout from a lookup table. A realtime calculation is only possible with a CPU power >> 20Mips. The used lookup table has the disadvantage of much higher ROM consumption, but is absolutely necessary if there a random acceleration and steprates and the CPU is not a Highend part.

A standard lookup table normally starts at 100Hz (StepMinFreq) because this value can be achieved with most operation modes and motors. The end of the table (StepMaxFreq) is mostly determined by the operation mode of the motor. With full- or halfsteps 1kHz is possible. With mini- or microsteps mode the max. steprate can reach 10kHz.

Both values define the size of the table and also the possible start- and max steprate with ramping.

3.36.3 Drive Modes

The drive mode (StepType) defines operation mode of the motor (Full, Half, Micro Step etc) and also the construction of the stepper power stage. There are 8 possible combinations:

	Name
	Driver
	 Steps
	Port

pins
	Ics

	StepFull 2
	StepF2
	Full Step
	((((
	2
	PBL3717..3777, L6219

	StepFull 4
	StepF4
	Full Step
	((((
	4
	L6203, L6204

	StepHalf 4
	StepH4
	Half Step
	((((
	4
	PBL3717..3777, L6219

	StepHalf 6
	StepH6
	Half Step
	((((
	6
	L6203, L6204

	StepMini 4
	StepM4
	Quart Step
	Trapez
	6
	L6219, TEA3738

	StepMini 6
	StepM6
	Hexa Step
	Trapez
	6
	L6219, TEA3738

	StepMicro 2
	StepM2
	8 Micro Steps
	Sinus
	2
	A3955, IMT901

	StepMicro 8
	StepM8
	8 Micro Steps
	Sinus
	8
	PBL3717..3777, L6219, TLE5250

	StepS4

	 StepS4
	32 Micro Steps
	 Sinus
	 10
	 LMD 18245

More about trapezoidal-mode in Siemens datasheet TCA3727

More about sinusoidal-mode in Allegro datasheet A3955
StepFull 2

Fullstep operation with 2 phase outputs
StepFull 4

Fullstep operation with 4 phase outputs
SteppHalf 4

Halfstep operation with 2 phase outputs and 2 Enable (low active!)
StepHalf 6

Halfstep operation with 4 phase outputs and 2 Enable (high active!)
StepMini 4

Quarterstep operation (trapez) with 2 phase outputs and 2*2 binary value outputs

StepMini 6

Hexastep operation (trapez) with 2 phase outputs and 2*2 binary value outputs
StepMicro 2

One pulse- and 1 direction output for sine wave operation (8 Microsteps) and/or intelligent powerstage
StepMicro 8

Sine operation (8 Microsteps) with 2 phase outputs and 2*3 binary value outputs

StepS4

Sine operation (32 Microsteps)

3.36.4 Import of the Stepper

In order to use the stepper driver it must be imported within the common import clause (Import StepPort;). Because the driver does internal calculations using LongWord, and also the number of steps to move is also given as LongWord, the type LongWord must be imported (From System Import LongWord;).

The output port to use must be declared in the Define-Block. For building the acceleration lookup tables the parameter StepMinFreq and StepMaxFreq must be defined. The desired soft driver also must be declared with StepType.

Device = 90S8515;

Import StepPort;

From System Import longword;

Define

 ProcClock
= 8000000;
{Hertz}

StackSize
= $0030, iData;

FrameSize
= $0010, iData;

StepPort
= PortA;

StepMinFreq
= 100;

StepMaxFreq
= 5000;

StepType
= StepM6;

XMega

With the XMegas Timer_C0…Timer_F1 must be defined, if present.

 StepTimer = Timer_C0; // use Timer_C0

3.36.5 Parameters of the Stepper

For the acceleration and deacceleration ramps at runtime there several parameter needed. These are variables which are published automatically if a StepPort is imported.

Warning: a parameter should only be changed if the driver is inactive! !

Var StepStartFreq : word;

Designates the start steprate at ramp start and the steprate which is achieved if the ramp down has ended The value of this variable should not be lower than the value of “StepMinFreq“ and also should be lower than “StepEndFreq“.

Var StepEndFreq : word;

Designates the end steprate where the ramp/acceleration should end and the steprate, at which the deacceleration starts. The value of this variable should be smaller as “StepMaxFreq“ and also should be larger than “StepStartFreq“.

Var StepAccValue : word;

Designates the acceleration in Hz/sec. Realistic values reside between 1000 and 10000.

In order to make a definite number of steps with the help of acceleration and deacceleration ramps (positioning), the additional parameter

Var StepCount : LongWord; {max 2^32 Steps}

is needed. StepCount must be loaded with the desired step count before starting the move. StepCount is the essential parameter for positioning. After the move StepCount contains the value 0.

If the time is the limit of the move (StepRampCW or StepRampCCW) StepCount contains the number of steps done with this command.

Type TStepMode = (StepStop, StepUp, StepRun, StepDown);

Var StepMode : TStepMode;

The variable StepMode always contains the actual state of the driver. This var can be changed by the application, but there is a risk of some strange behaviour is if you do this, so please read only!

If the driver is idle “StepMode“ contains the value “StepStop“. If accelerating StepMode shows “StepUp“. Whilst ramp-down the value is “StepDown“. In the possible linear phase (constant StepRate) the value “StepRun“ is exhibited.

Because of this the application can increase the current of the motor (boost) while acceleration or deacceleration is in progress.

Because a parameter only should be changed in idle mode it is a must to check the driver state by reading the variable StepMode and test for StepStop before changing any var or inserting a new command. Normally the parameters are set once at startup and remain unchanged. An exception is the var StepCount, which must be always setup before a destination move command.

3.36.6 Commands/Procedures of the Stepper

The stepper driver knows three logical operation modes with the accomplished commands and/or procedures. These are SingleStep, Ramp and Positioning.

Important: a procedure should only called in idle mode (StepMode = StepStop) with the exception of the command “StepRampStop“ in the Rampmode.

StepperOn

Switches the power stage active outputs the last step combination at the output port. This command can be invoked before each action/command, but is not a must.

StepperOn;

{switch power stage active}

StepperOff

Switches the powerstage inactive or removes the current from motor. This command can be invoked after each action to avoid overheating of the power stage or motor. If a reduction of the motor current is possible this should be preferred over “StepperOff“.

StepperOff;

{Switch power stage inactive}

StepOneCW

Step one step clock wise. No parameters are needed or changed. StepCount is not changed.

StepOneCW;

{one step CW}

StepOneCCW

Step one step counter clock wise. No parameters are needed or changed. StepCount is not changed.

StepOneCCW;
{one step back}

StepRampCW

Step up ramp clockwise. The parameters StepStartFreq, StepEndFreq, and StepAccValue are needed but not changed. At first StepCount is reset to 0 then each step is counted. The acceleration ramp is processed until the maximum steprate (StepEndFreq) is exceeded or the command “StepRampStop“ is given. In the first case the driver proceeds stepping with End frequency until the command “StepRampStop“ is invoked, then a ramp-down follows until StepStartFreq is reached and the motor is stopped. If the command “StepRampStop“ is invoked whilst ramping up the deacceleration is started immediately. A StepRampXX command always needs a StepRampStop command

StepRampCW;
{step until stop command}
StepRampCCW

Step up ramp counter clockwise. The parameters StepStartFreq, StepEndFreq, and StepAccValue are needed but not changed. At first StepCount is reset to 0 then each step is counted. The acceleration ramp is processed until the maximum steprate (StepEndFreq) is exceeded or the command “StepRampStop“ is given. In the first case the driver proceeds stepping with End frequency until the command “StepRampStop“ is invoked, then a ramp-down follows until StepStartFreq is reached and the motor is stopped. If the command “StepRampStop“ is invoked whilst ramping up the de​acceleration is started immediately. A StepRampXX command always needs a StepRampStop command

StepRampCCW;
{step until stop command}

StepRampStop

If a StepRamp command is in progress the command switches to ramp down mode. If the command “StepRampStop“ is invoked whilst ramping up the de-acceleration is started immediately. A StepRampXX command always needs a StepRampStop command

StepRampStop;
{ramp down}

StepDestCW

Step up ramp clock wise, step a definite amount of steps deaccelerate and stop. The parameters StepStartFreq, StepEndFreq, and StepAccValue are used but not changed. StepCount must be loaded with the desired step count and will be decremented at each step. The acceleration ramp is processed until the maximum Steprate (StepEndFreq) is reached or the half amount of steps is done, whatever comes first. If the half step amount is reached before the maximal speed is reached the driver immediately switches to ramp down until StepCount is zero. In case speed maximum is reached first the driver remains on max speed until the remaining steps to do are satisfactory to do a secure ramp down until StepCount is zero.

StepDestCW;

{step an amount of steps}
StepDestCCW

Step up ramp counter clock wise, step a definite amount of steps deaccelerate and stop. The parameters StepStartFreq, StepEndFreq, and StepAccValue are used but not changed. StepCount must be loaded with the desired step count and will be decremented at each step. The acceleration ramp is processed until the maximum Steprate (StepEndFreq) is reached or the half amount of steps is done, whatever comes first. If the half step amount is reached before the maximal speed is reached the driver immediately switches to ramp down until StepCount is zero. In the case where speed maximum is reached first the driver remains on max speed until the remaining steps to do are satisfactory to do a secure ramp down until StepCount is zero.

StepDestCCW;
{step an amount of steps}
3.37 Stepper-Motor in UserMode

Fundamentals

The standard stepper motor driver generates up- and down ramps and places step and phase information onto the choosen port of the CPU. These signals serve for direct controlling the H-bridges, and possibly the additional DA-converters for micro steps.

This kind of operation is not suitable for smart power drivers which often need a special command protocol. Because of this the driver is enhanced by the UserPort mode. In this mode there is no phase or step information and also a physical port for output is not necessary. Only the ramp generating and processing and the step counting is implemented.

The communication with the application is executed by a special Call-Back function of type UserDevice.

This function must be provided by the application. With each step of the driver this function is called. Inside of the function the application must build the phases and eventually the DAC signals and must pass them to the power driver. Now it’s possible to handle a stepper motor controller such as Trinamic TMC239 with its SPI interface.

Internally within the driver the forward/backward steps are added/subtracted correctly.

Imports

In order to use the stepper driver it must be imported within the common import clause Import StepPort.

Because the driver calculates internally with LongWord, and also the number of steps to move is given as LongWord, the type LongWord must be imported (From System Import LongWord;).

Because there is no real port for the driver the output port must not be declared in the Define-Block. For building the acceleration lookup tables the parameter StepMinFreq and StepMaxFreq must be defined. The desired soft driver also must be declared with StepType.

Device = mega16;

Import StepPort;

From System Import longword;

Define

 ProcClock
= 16000000; {Hertz}

 StackSize
= $0050, iData;

 FrameSize
= $0020, iData;

 StepMinFreq
= 100;

 StepMaxFreq
= 10000;

 StepType
= UserPort;

If a driver chip needs only Step and Dir lines then the StepperIOS function can completely be removed if the two necessary pins are defined in the Define section.
Define

 …

 StepType
= UserPort;

 StepPort
= PortE.0, PortE.1; // Clock, Dir, no StepperIOS

An example for this specific mode can be found in the Demos directory in XMEGA_StepperU.
3.37.1 Parameters of the Stepper

For the acceleration and deacceleration ramps at runtime there several parameter needed. These are variables which are published automatically if a StepPort is imported. Important: a parameter should only be changed if the driver is inactive!!

Var StepStartFreq : word;

Designates the start steprate at ramp start and the steprate that is achieved if the ramp down has ended. The value of this variable should not be lower than the value of “StepMinFreq“ and also should be lower than “StepEndFreq“.

Var StepEndFreq : word;

Designates the end steprate where the ramp/acceleration should end and the steprate at which the deacceleration starts. The value of this variable should be smaller as “StepMaxFreq“ and also should be larger than “StepStartFreq“.

Var StepAccValue : word;

Designates the acceleration in Hz/sec. Realistic values are between 1000 and 10000.

In order to make a definite number of steps with the help of acceleration and deacceleration ramps

(positioning), the additional parameter

Var StepCount : longword; {max 2^32 Steps}

is needed. StepCount must be loaded with the desired step count before starting the move. StepCount is the essential parameter for positioning. After the move StepCount contains the value 0. If only the time is the limit of the move (StepRampCW or StepRampCCW) StepCount contains the number of steps done with this command.

Type TStepMode = (StepStop, StepUp, StepRun, StepDown, RampDown);

Var StepMode : TStepMode;

The variable StepMode always contains the actual state of the driver. This var can be changed by the application, but some strange behavior can result from this, so please read only!

If the driver is idle “StepMode“ contains the value “StepStop“. If accelerating StepMode shows “StepUp“. Whilst ramp-down the value is “StepDown“. In the possible linear phase (constant StepRate) the value “StepRun“ is exhibited. Because of this the application can increase the current of the motor (boost) while acceleration or deacceleration is in progress.

Because a parameter only should be changed in idle mode it is imperative to check the driver state by reading the variable StepMode and test for StepStop before changing any var or inserting a new command. Normally the parameters are set once at startup and remain unchanged. An exception is the var StepCount, which must always be setup before a destination move command.

With the UserMode selected the application must provide the CallBack function StepperIOS.

This function must build the whole of the IOs and the phases.

UserDevice StepperIOS (cw : boolean);

begin

 doTheJob;

end;

The parameter CW defines the current rotation direction, clockwise or counterclockwise.

3.37.2 Commands/Procedures of the Stepper

With the UserMode the stepper driver knows two logical operation modes with the accomplished commands and/or procedures. These are Ramp and Positioning.

Attention:

a procedure should only called in idle mode (StepMode = StepStop)!! With the exception of the command “StepRampStop“ and “StepVelocity“ in the Rampmode.

StepperOn

StepperOff

These functions above make no sense in UserMode and are not implemented.

StepRampCW

Step up ramp clock wise. The parameters StepStartFreq, StepEndFreq, and StepAccValue are needed but not changed. At first StepCount is reset to 0 then each step is counted. The acceleration ramp is processed until the maximum steprate (StepEndFreq) is exceeded or the command “StepRampStop“ is given. In the first case the driver proceeds stepping with End frequency until the command “StepRampStop“ is invoked, then a ramp-down follows until StepStartFreq is reached and the motor is stopped. If the command “StepRampStop“ is invoked whilst ramping up the deacceleration is started immediately. A StepRampXX command always needs a StepRampStop command

StepRampCW;
{step until stop command}

StepRampCCW

Step up ramp counter clock wise. The parameters StepStartFreq, StepEndFreq, and StepAccValue are needed but not changed. At first StepCount is reset to 0 then each step is counted. The acceleration ramp is processed until the maximum steprate (StepEndFreq) is exceeded or the command “StepRampStop“ is given. In the first case the driver proceeds stepping with End frequency until the command “StepRampStop“ is invoked, then a ramp-down follows until StepStartFreq is reached and the motor is stopped. If the command “StepRampStop“ is invoked whilst ramping up the deacceleration is started immediately. A StepRampXX command always needs a StepRampStop command

StepRampCCW;
{step until stop command}

StepRampStop

If a StepRamp command is in progress the command switches to ramp down mode. If the command “StepRampStop“ is invoked whilst ramping up the de-acceleration is started immediately. A StepRampXX command always needs a StepRampStop command

StepRampStop;
{ramp down}

StepVelocity(v : word) : boolean;

With ramp mode this function can be called everytime. The parameter V then temporary replaces the value of StepEndFreq. If the system is in ramp-up or ramp-down state normally there is no immediate influence of the behaviour. If the system is in constant velocity so this will be changed. If necessary an additional ramp-up or ramp-down is executed.

The value of StepEndFreq will not be changed. The value of “v” must not be smaller than StepMinFreq
StepVelocity (1000);

StepDestCW

Step up ramp clock wise, step a definite amount of steps deaccelerate and stop. The parameters StepStartFreq, StepEndFreq, and StepAccValue are used but not changed. StepCount must be loaded with the desired step count and will be decremented at each step. The acceleration ramp is processed until the maximum Steprate (StepEndFreq) is reached or the half amount of steps is done, whatever comes first.

If the half step amount is reached before the maximal speed is reached the driver immediately switches to ramp down until StepCount is zero. In case speed maximum is reached first the driver remains on max speed until the remaining steps to do are satisfactory to do a secure ramp down until StepCount is zero.

StepDestCW;

{step an amount of steps}

StepDestCCW

Step up ramp counter clock wise, step a definite amount of steps deaccelerate and stop. The

parameters StepStartFreq, StepEndFreq, and StepAccValue are used but not changed. StepCount must be loaded with the desired step count and will be decremented at each step. The acceleration ramp is processed until the maximum Steprate (StepEndFreq) is reached or the half amount of steps is done, whatever comes first. If the half step amount is reached before the maximal speed is reached the driver immediately switches to ramp down until StepCount is zero. In case speed maximum is reached first the driver remains on max speed until the remaining steps to do are satisfactory to do a secure ramp down until StepCount is zero.

StepDestCCW;
{step an amount of steps}

StepPanicStop
Immediately stops a ramp or destination move. In most cases steps are lost by this hard stop so "StepCount" always contains 0.

StepperSema
The Stepper driver can handle a semaphore. If used it must be imported with:

From StepPort Import StepperSema;

If the motor stops after a function StepDest or StepRampStop this semaphore is set to 1. So processes or tasks can use WaitSema to wait until the motor has stopped.

[image: image31.png]

[image: image32.jpg]Charset Editor
LCD Char Editor
Bithap Editor

Curve Editor

Intel-Hex Editor
WAV Convertor
ModBUS Tester
USBINF + VS Builder
USB Tester -l
USB smart Tester

USB Viewer

[image: image33.jpg]E-LAB USE T

Wendor = E-Lab Computers, VemdorID = 1234, Proguct = xMiniUSEAp, ProdwctiD = O0IE, ProdRelease = 201 Sexfium = 3143323

AVR USB |[XMega USBsmart

XMega USBport

select one item

Search Test

1 close

3.37.3 StepperIOS

The UserDevice StepperIOS is called out of the Timer Interrupt. Because of this used registers must be saved and restored. The system supports the application by always saving the following registers which then can be used by the device driver function without any limitations:

 _ACCGLO
R0

 _ACCGHI
R1

 _ACCB
R16

 _ACCA
R17

 _ACCALO
R18

 _ACCAHI
R19

 _ACCDLO
R20

 _ACCDHI
R21

 _ACCELO
R22

 _ACCEHI
R23

 _ACCFLO
R24

 _ACCFHI
R25

 _ACCBLO
R26

 _ACCBHI
R27

 _ACCCLO
R30

 _ACCCHI
R31

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\StepperDemo

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_Stepper

schematic StepDemo with Trinamic Chip TMC239[image: image34.png]Vendor D Grexfomst) [oe
podictD exfoma) [002
M (s format) l—
Menufacturer Name [Frecomies
Device Name [Evomguserzs

<Back Next > cancel

3.38 Servo Driver for up to 8 digital Servos

Basics

With small robots, manipulators and handling systems the simple but effective positioning jobs must be solved. Here the well known model (aircraft, vessel or car) servos are preferred. These are available with a torque up to 100Ncm and more.

Equipped with ball bearings and metal gears they are very robust and precise, but the main advantage of them is the price.

In most cases the servos are controlled by pulses where the pulse duration contains the desired position. Over the years a standard has been established:

Cycle time

: 20msec

neutral pulse width
: 1.5msec

max positive position
: 2msec

max negative position
: 1msec

pulse polarity

: positive

With some exotic types the cycle time can be longer or shorter. The same is true for the neutral position. The pulsewidth variation is the same with all types: +/- 0.5msec

The servos provide a trimming of the neutral position within limits. This must be done in the impulse generator (servo controller) which can change its variation for example from 1.5msec +/- 0.5msec to 1.6msec +/- 0.5msec

The cycle time of 20msec and the maximal pulsewidth of 2msec (+/- neutral offset) allow the control of up to 8 servos because with radio controls the pulses are sent sequentially and serially and an additional pause of a few msec must be inserted to allow the receiver to synchronize the packet.

Overview ServoPort

This implementation doesn’t build a serial sequential pulse packet but uses a separate port pin for each servo channel. The pulses of the channels are staggered so simultaneous motor starts of the channels are avoided; otherwise high current peaks will be generated. The advantage of this implementation is that all pulses can be built with one hardware timer of the CPU. This timer then must be interrupt driven.

The driver runs transparently in the background. With two exported functions the servo position and offset of each channel can be controlled. The system calculates and scales the parameters and stores them in an array. The timer interrupt cyclically processes this array and generates the pulses.

The timer is completely reserved for the servo driver and cannot be used for other jobs. With the AVR only timer1 or timer3 (mega64, mega128) can be used.

Important:

Because the timer does its job in an interrupt each interrupt response delay results in a jitter of the generated Impulse that can possibly lead to a creak or purr of the servos.

The sources for such interrupt delays can be:

1. A disabled global interrupt by the application. This should be avoided or must not last more than a few usec.

2.
System interrupts, UART, Timer etc. The system itself avoids long lasting interrupt procedures. But with the SystemTick with many jobs like SystemTimer, RTC, MultiTasking Scheduling etc. there can be fluctuations of 10..30usec. In some cases it’s necessary to check whether the jitter is acceptable.

3.
Application interrupts. Here the common principle must be bourne in mind: the longer an interrupt service lasts the more other interrupts are delayed or in worst case will be skipped and get lost.

3.38.1 Technical Data

Cycle time

20msec fixed

Neutral pulse time
adjustable from 1.0msec to 2.0msec

Pulse variation
+/- 0.5msec default, definable between +/-0.5 and 1.0msec

Neutral offset

+/- 30% of the pulse variation

Channels

1..8
chan0..chan7

Timer

Timer1 or Timer3 (XMegas Timer_C0…Timer_F1)
Imports

As usual with the AVRco system the driver must be imported and defined.

The SysTick is not used.

Import
ServoPort;

Defines

The used CPU port must be specified and also the first useable bit of this port. The used memory area must be defined where the variables are located, how many channels must be used and their polarity. The neutral pulse width and the hardware timer must also be defined.

Define
ProcClock
= 8000000;

{8Mhz clock }

ServoPort
= PortB, 2, iData;
{Port, Startbit im Port, data area}

ServoChans = 4, Positive;

(4 channels, positive pulse}

ServoNeutral
= 1.5, Timer1;

(1.5msec neutral position, use Timer1}

ServoSwing
= 1.0;

(adjustable between 0.5 and 1.0msec, Resolution 100 pts}

Optional resolution of 1000 points

ServoSwing
= 1.0, 1000;

(adjustable between 0.5 and 1.0msec, Resolution 1000 pts}

ServoPort

Defines the port to be used, the first useable bit of it and the memory area of the driver’s variables. The port can be an output-only type. The startbit in the port must be set so that all desired channels fit into this port. The memory location defines the memory area where the working variables of the driver should be placed.

ServoChans
Defines the channel or servo count (1..8) and consequently defines the necessary internal memory usage.

The pulse polarity must be defined with “Positive“ or “Negative“ common for all channels.

ServoNeutral
Defines the neutral pulsewidth (1.0 … 2.0) common for all channels/servos. A 16bit timer is needed which with an AVR is usually Timer1. With new types (mega64, mega128) Timer3 is also useable.

With XMegas Timer_C0…Timer_F1 must be used, if present.

ServoSwing
Optional, default 0.5msec. Defines the max. swing of all channels (+/-0.5 … +/-1.0msec).

As a additional option the servo resolution (precision) can be extended to 1000 points.

3.38.2 Functions

SetServoChan

Procedure to set the servo position. The parameter chan selects the channel (0..ServoChans-1).

The parameter pulse defines the new position in % (-100...+100). For the 1000 resolution the pulse values can vary between -1000 and +1000.

Illegal channel numbers are discarded. Pulse values exceeding the +/-100 (+/-1000) limit are clamped to +/-100 (+/-1000).

Procedure SetServoChan (chan : byte; pulse : integer);

SetServoOffs

Changes the servo neutral position. The parameter chan selects the channel (0..ServoChans-1).

The parameter offs defines the new neutral position in % (-30...+30). Illegal channel numbers are discarded. Offs values exceeding the +/-30 limit are clamped to +/-30

Procedure SetServoOffs (chan : byte; offs : integer);

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\Servo

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_Servo

3.39 DCF-77 Decoder

Real Time Clocks become more and more important with medium and large systems. Because of this the AVRco library contains a RTC driver, which supports the RTC of several AVRs and which can also use the SysTick as its heartbeat. The internal RTC is somewhat more precise than the version with the SysTick. But in most cases the precision of the SysTick version is sufficient.

The precision is no problem. More difficult is the initialization of the RTC. After each Power-Up the RTC must be setup for correct time and date. As well as the additional hardware and software that is needed to setup the clock there is also the risk of a wrong or forgotten setup after a power up.

To avoid these problems and costs there are two solutions:

1. Use of an additional RTC that is battery backed. A setup of the RTC is only necessary once, but several port pins are needed (6..8), or with an I2C-chip an additional driver must be installed. Furthermore a long term deviation must be expected and also the leap years and winter/summer time changes must be handled manually.

2. Usage of a DCF77 receiver (Europe only). With DCF77 there are absolutely no setup or precision problems. The only disadvantage is the setup-time of up to 2 minutes after power up. Also the DCF77 receiver must be placed to a location with low radiation distortion to assure useable receive data. The DCF77 driver inserts itself into the SysTick.

If one has a choice the DCF77 clock should be preferred. With good receiving conditions an absolute error free and problem free operation can be expected. (DCF77 is only applicable in Europe)

The DCF77 clock is not a real-time-clock. It must always work in connection with another clock. The AVRco system provides three possibilities:

1.
DCF77 controls the RTC of an AVR CPU. The RTC driver must be imported.

2.
DCF77 controls the RTC which is clocked by the SysTick.

3.
DCF77 controls an external clock chip

Items 1 and 2 are identical from the DCF77 driver’s point of view. If an error free time has been received each minute the RTC will be adjusted. There is no user program intervention. The DCF77 driver recognizes the RTC automatically.

Item 3 (RTC Chip) is supported by a CallBack procedure. If this procedure is present, it is called at each full minute, provided that a complete telegram was received error free. The CallBack procedure, which must be provided by the programmer, now can synchronize the external chip by writing the proper memory content of the DCF77 into the chip. This procedure is called from within the SysTick, so please obey register savings and time consumption because the global interrupt is disabled for the whole procedure.

But the external chip is a special case. With most of the cases the RTC driver is precise enough to solve all possible jobs.

Imports

As usual with AVRco the driver must be imported.

Import SysTick, DCFclock, ..;

Defines

The port pin used as the DCF-input and also the memory area of the DCF registers must be defined:

Define {mega103}
 ProcClock
= 8000000;
{Hertz}

 SysTick
= 10 , Timer2;
{msec}

 DCFclock
= iData;

 DCFport
= PinD, 2, negative;
{Port, bitnumber, polarity}

 DCFfieldMode
= reset;
 // decrement, optional "reset"

Important:

The SysTick must fulfill several conditions. The SysTick must not be lower than 1msec and not higher than 100msec, it must be an integer number and 1000 / SysTick must not have a remainder (1000 mod SysTick = 0).

3.39.1 DCF77-Functions/Procedures

Basic and implementation dependent procedures and functions.

Function DCFready : boolean;

The result of this function becomes true if the DCF77 driver received a complete error free telegram and stored it into the RTC. From this moment on one can assume that the RTC’s data is absolutely correct. After power-up this process lasts at least 1 minute and with good receiving quality it lasts 2 minutes at maximum. Poor reception level delays the ready by up to several minutes.

Function DCFfield : byte;

The result of this function represents the quality of the receiving level. A zero equals no data, a 255 is optimal. It lasts some Minutes until this value has stabilized.

With each valid frame (1sec) this value is incremented by one. With an invalid frame there are two possible reactions:

If the Define DCFfieldMode is set to “decrement“ each error decrements the value by one.

If the Define DCFfieldMode is set to “reset“ each error resets the value to zero.

Function DCFDayLightSave : boolean;

Returns the current daylight saving. With summer time the result = true.

Procedure DCFupdate;
// Callback Procedure

If the DCF77 driver can’t locate the import of the RTC, it calls the procedure “DCFupdate“ every minute, if this procedure is implemented. This procedure can control and update an external RTC chip. The memory locations/variables

DCF_ SECOND, DCF_MINUTE, DCF_HOUR, DCF_DAY, DCF_MONTH, DCF_YEAR, DCF_WEEKDAY

can be used for this. Please note that this function is called from within the SysTick. Used register must be saved under some circumstances. It’s a good idea to use assembler code for this purpose.

3.39.2 Hardware

DCF77 receivers are available as small boards and also for wall mounting or racks. The wall is the best location because the place and the distance to a possible distortion source (PC etc) is very important. A distorted receiver can lead the many minutes until the DCF77 driver has synchronized itself. During the synchronization phase the connected RTC runs with invalid data.

A DCF77 receiver module sends a bit-serial telegram to the CPU via one wire. With the CPU a single input pin is used for the reception.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\DCF77

3.40 AVR Timer Low Level Driver TickTimer
Often a cyclical interrupt or pulse train is needed which must be able to be precisely setup in its timing. The System Timers are not suited for these purposes, especially if a very constant and precise timing is necessary. Then a hardware timer is a neccessity.

The introduced driver uses one 16bit timer of the AVR CPU, either TIMER1 or timer3, 4, 5 if present. The selected timer then is not available for other jobs (Stepper etc). With both timers the COMPARE-MATCH-A function is used. It’s also possible to use the 8bit Timer2 if present.

The timing can be set between 10usec to 4sec in 1usec increments. With the 8bit Timer2 the resolution strongly depends of the processor clock. As an option the driver can support an interrupt. As another option the output of the timer can be routed to the relevant Compare-Match pin.

By the import of the driver and its defines the setup of the timer is preset. Then there are several functions that can be used by the application. The tick time can be changed. The timer can be stopped and restarted. The optional output pin can be disabled or enabled.

Imports

As usual with AVRco the driver must be imported.

Import SysTick, TickTimer, ..; // Xmega TickTimer and/or TickTimer2
From System Import LongWord; // needed for calculations

Defines

The timer that shall be used by the driver must be defined

Define
ProcClock
= 16000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

TickTimer
= Timer1;
// use Timer1.COMPA and no PortPin

//TickTimer
= Timer1, pinout;
// use Timer1.COMPA and its PortPin

//TickTimer
= Timer2;
// use Timer2.COMPA and no PortPin

//TickTimer
= Timer2, pinout;
// use Timer2.COMPA and its PortPin

//TickTimer
= Timer3;
// use Timer3.COMPA and no PortPin

//TickTimer
= Timer3, pinout;
// use Timer3.COMPA and its PortPin

With the TickTimer define an 8/16bit timer is selected. With most of the AVRs there is at least Timer1 present. With newer and bigger types there also timer3 or the 8bit Timer2 or the two 16bit versions Timer4 and Timer5 which are also supported if present.

The optional Define extension pinout enables and connects the COMPA output pin of the timer and the timer toggles this pin at runtime. The function TickTimerOutpEnable is only available with this Define mode as is the variable TickTimerPin.

XMega

With the XMegas a Timer_C0…Timer_F1 must be defined, if present. In addition the desired Output Port and Pin can be defined. PinOut is not valid here.

TickTimer
= Timer_C0;
 // use Timer_C0 and no PortPin

TickTimer2
= Timer_C1, PortE, 5;
// use Timer_C1 and PortE, pin 5
3.40.1 Variable

Var TickTimerPin : bit;

{ TickTimer2Pin}
This variable can be used to “manually“ switch the level of the of the timer pin provided the timer is stopped. The variable is only available if pinout is defined.
Functions

Function TickTimerTime (time : longword) : boolean;

// XMega also TickTimer2Time
Function TickTimerReload (time : longword) : boolean;

// XMega also TickTimer2Reload
Procedure TickTimerRawVal (presc : byte; cmp : word|byte);

// XMega also TickTimer2RawVal
Procedure TickTimerStart;

// XMega also TickTimer2Start
Procedure TickTimerStop;

// XMega also TickTimer2Stop
Procedure TickTimerOutpEnable (enable : boolean; Level : byte); // XMega also TickTimer2OutpEnable
Function TickTimerTime (time : longword) : boolean;

{ TickTimer2Time}
This function stops a running timer and calculates the new setting given by the time argument. Then the values are written into the timer’s prescaler and compare registers. The argument time defines the tick-time (pause between two interrupts or pin toggles) in usec. The minimum useable value of a tick is 10usec. The possible maximum value depends on the processor clock. With 16MHz this is about 4sec, with 8MHz it is about 8sec. With the 8bit Timer2 these lower limits must be increased in relation. The processor clock must not be below 1MHz. The result becomes false if the given time argument leads to illegal timer settings.

Function TickTimerReload (time : longword) : boolean;
{ TickTimer2Reload}
This function does not stop or restart the timer like the function above. The purpose of this function is the same as the above except that the timing can be changed without stopping or disturbing the Timer.

Procedure TickTimerRawVal (presc : byte; cmp : word|byte); { TickTimer2RawVal}
This is an alternative to the function TickTimerTime. Here the prescaler and the compare register can be written directly. The prescaler value must be in the range of 1..5 for the Timer1 and 3. For the Timer2 values between 1..7 are possible. The compare value is of type word for the two 16bit Timers and a byte for the 8bit Timer2.

Procedure TickTimerStart; { TickTimer2Start}
Starts the timer and its interrupt, if present. This function must be used after one of the above two first functions in order to restart the timer. Also after a program Start/Reset, when the timer is stopped.

Procedure TickTimerStop;

Stops the timer and its interrupt, if present. Restart the timer with TickTimerStart.

Procedure TickTimerOutpEnable (enable : boolean; Level : byte); { TickTimer2OutpEnable}
If the timer output is imported by the Define pinout the system provides this function. A timer stop or start has no influence on the state of the COMPA pin. In the stop-condition this pin retains its last state given by the timer. If the timer is started the pin toggles at its given rate.

With this function the output pin can either be connected to the timer with enable = true or disconnected from the timer with enable = false. In the last case the timer has no control of the pin but the pins stays in its last state. In order to have now a definite output level if the timer is disconnected, the desired pin state must be passed in the argument level.

With level <> 0 the pin then becomes a logical 1. If the pin is connected to the timer (enable = true) the argument level is meaningless.

3.40.2 Interrupt

The timer generates an interrupt if desired. In order to do so the Callback procedure must be implemented. This procedure then can serve for other additional jobs. Please note that this is a Callback out of an Interrupt.

Procedure onTickTimer; // onTickTimer(SaveAllRegs); // onTickTimer2
begin

 ...

end;

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\TickTimer

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_TickTimer

3.41 FreqCount Driver - Frequency Counter/Timer

Not for XMegas

In some applications a function is necessary which can measure or count an external frequency, or the ontime of a pulse must be found. For an experienced programmer this is no problem. Take a 16bit hardware counter, an appropriate time gate and the frequency counter or timer is ready. But often the little details cause some problems.

So it makes sense to implement such a function completely as a library driver. Then the programmer need not worry and can do his main work, building the application.

3.41.1 Overview Frequency Counter

This implementation uses an existing 16bit timer (Timer1 or Timer3 in the mega128) as an pulse counter. With the frequency counter the gate is handled by the SystemTick. This saves resources of the CPU. The timer gate can be set to 10sec, 1sec, 100msec and 10msec. The result of the measure cycle is a 16bit/32bit value.

The drawback of the SystemTick usage (Freq. counter) is the somewhat reduced precision of the result and some limitations with the choice of the SysTick value. The inherent precision is in the range of 0.1%..0.2% depended of the processor clock and the SysTick value. The higher the CPU clock and the lower the SysTick value the better the result (within some limits). An optimal result can be achieved with a CPU clock >= 8MHz and a SysTick of 2msec. If several interrupts are running there will be a jitter in the results.

Some limitations exist when the SysTick value has to be defined. Because of the gate times the following limitations apply:

100Hz area

resolution
0.01Hz

max frequency
655.35Hz
=
0.65535kHz

gate time
100sec

SysTick
1msec, 2msec, 2.5msec, 4msec, 5msec, 8msec, 10msec

1kHz area

resolution
0.1Hz

max frequency
6553.5Hz
=
6.5535kHz

gate time
10sec

SysTick
1msec, 2msec, 2.5msec, 4msec, 5msec, 8msec, 10msec

10kHz area

resolution
1Hz

max frequency
65535Hz
=
65.535kHz

gate time
1sec

SysTick
1msec, 2msec, 2.5msec, 4msec, 5msec, 8msec, 10msec

100kHz area

resolution
10Hz

max frequency
655350Hz
=
655.35kHz

gate time
100msec

SysTick
1msec, 2msec, 2.5msec, 4msec, 5msec, 10msec

1MHz area

resolution
100Hz

max frequency
6553500Hz
=
6.5535MHz

gate time
10msec

SysTick
1msec, 2msec, 2.5msec, 5msec, 10msec

In the MHz area the maximum frequency is also limited by the processor clock. The external clock of a timer must not exceed ProcClock/4. With an 8MHz CPU clock this is then 2MHz.

The clock or frequency signal that must be measured must be connected to the Clock input of the used timer. With Timer1 this is the PIN T1 and with the Timer3 this is PIN T3. The application must ensure that this port pin is programmed as an input.

3.41.2 Overview Pulse Timer

The implementation of the pulse timer uses the same 16bit Timer as the frequency counter part. The SysTick is not used and because of this there is no SysTick restriction with the Timer function.

The possible resolution and precision with the timer mode is completly dependant on the CPU-clock and the prescaler of the used 16bit timer. So we can say: the higher the CPU-clock is, the shorter the pulses to measure can be, but also the longest possible pulse will be reduced. The lower the CPU clock is, the longer the pulse times can be.

Contrary to the frequency counter part, which is dependant on the SysTick, the Timer part depends totally on the processor clock. The driver is optimized for clocks between 4 and 16MHz.

The minimum resolution can be adjusted in 4 steps: 10usec, 100usec, 1msec and 10msec

The typical maximal pulse times then are: 100msec, 1sec, 10sec, 100sec.

100msec area

resolution
10usec

max time
min 100msec max 500msec

1sec area

resolution
100usec

max time
min 1sec max 4sec

10sec area

resolution
1msec

max time
min 4sec max 10sec

100sec area

resolution
10msec

max time
min 40sec max 100sec

The pulse signal that must be measured must be connected to the capture input of the used timer. With Timer1 this is the PIN ICP1 and with the Timer3 this is PIN ICP3. The application must ensure that this port pin is programmed as an input.

The driver samples either a complete cycle or a positive pulse, depending on the selected mode.

TTimeBasexx = cycle capture

TPulseBasexx = pulse capture (positive pulse).

The timer mode uses the InputCapture mode of the selected 16bit timer. The readback of the timers is done in the InputCaptureInterrupt and doesn’t load the CPU very much, but with long interrupt disable times in other parts of the application or the system, sometimes the result can be wrong. The system cannot see this problem and so cannot prevent it. The application must take care with of and check the results for plausibility.

Two Timer or Counter channels can be imported: FreqCounter and FreqCounter2.

FreqCounter2 is fixed to the Timer3 and so is only possible if the CPU has this Timer on chip, for example the mega64 and the mega128.

Imports

As usual with the AVRco system the driver must be imported and defined. For a complete implementation the import of the SysTick is also necessary.

FreqCount and/or FreqCount2

Imports the frequency counter/timer FreqCount or FreqCount2
The import of FreqCount also imports automatically several library functions and procedures.

The SysTick must also be imported.

Import SysTick, FreqCount [, FreqCount2];

Defines

The driver needs an internal 16bit timer, either Timer1 or Timer3, if it exists.

Define
ProcClock
= 8000000;
{8Mhz clock }

SysTick
= 2.0;
{2msec Tick}

FreqTimer = Timer1;
(used 16bit Timer}

FreqTimer2
= Timer3;
(restricted to Timer3
FreqTimer, FreqTimer2

Defines the 16bit timer to be used. FreqTimer2 is fixed to Timer3. The SysTick should only have the following values: 1msec, 2msec, 2.5msec, 4msec, 5msec, 8msec, 10msec. All other values can lead to greater or lesser precision loss. See above the declarations in the overview.

3.41.3 Functions, Procedures, Types

tFreqCountMode

The import of the driver exports the type tFreqCountMode which is an enumeration. It serves as a select of the gate time or the prescaler of the counter. The following settings are possible:

TFreqBaseNone

TFreqBase100Hz

Frequ = 0.01Hz...655.35Hz
gate time = 100sec

TFreqBase1kHz

Frequ = 0.1Hz...6.5535kHz
gate time = 10sec

TFreqBase10kHz

Frequ = 1Hz...65.535kHz
gate time = 1sec

TFreqBase100kHz

Frequ = 10Hz...655.35kHz
gate time = 100msec

TFreqBase1MHz

Frequ = 100Hz...6.5535MHz
gate time = 10msec

TTimeBase100s/ TPulseBase100s

Time = 10msec…100sec
period/pulse

TTimeBase10s/ TPulseBase10s

Time = 1msec…10sec

period/pulse

TTimeBase1s/ TPulseBase1s

Time = 100usec…1sec

period/pulse

TTimeBase100ms/ TPulseBase100ms
Time = 10usec…100msec
period/pulse

The definition of tFreqCountMode is:

Type tFreqCountMode = (TFreqBaseNone, TFreqBase100Hz, TFreqBase1kHz, TFreqBase10kHz,
TFreqBase100kHz, TFreqBase1MHz, TTimeBase100s, TTimeBase10s, TTimeBase1s, TTimeBase100ms, TPulseBase100s, TPulseBase10s, TPulseBase1s, TPulseBase100ms);
FreqCountSema, FreqCountSema2
This semaphore will be incremented with each new result. Useful not only with MultiProcessing but also with standard applications to save CPU power.

SetFreqCountMode, SetFreqCountMode2
With this procedure the gate time/resolution or prescaler of the counter must be set. This must be done at least once at program start.

Procedure SetFreqCountMode (mode : tFreqCountMode);

The parameter mode is the desired resolution. Please note that at least the first measure cycle after a mode change is invalid.

GetFreqCountMode, GetFreqCountMode2

The function GetFreqCountMode returns as its result the actual mode of the counter

Function GetFreqCountMode : tFreqCountMode;
GetFreqCounter, GetFreqCounter2

The function GetFreqCounter returns the result (16bit value) of the last frequency measurement cycle. How the result must be interpreted depends on the selected mode because it is a fixed decimal point value where the decimal point position depends on the selected mode. If an overflow occurs an $FFFF is returned. A call to this function also clears the semaphore.

Function GetFreqCounter: word;

Important:

This function must only be used if the frequency counter mode is selected. Otherwise the function GetTimeCounter must be used.

GetFreqCounterL, GetFreqCounter2L

The function GetFreqCounterL returns the result (32bit value) of the last measure cycle. The result must be interpreted depending of the selected mode because it is a fixed decimal point value where the decimal point position depends on the selected mode. If an overflow occurs a $FFFFFFFF is returned.

A call to this function also clears the semaphore.

Function GetFreqCounterL: longword;

Important:

This function must only be used if the frequency counter mode is selected. Otherwise the function GetTimeCounter must be used.

GetFreqCountOvrFlow, GetFreqCountOvrFlow2

The function GetFreqCountOvrFlow returns the overflow, if any, of the last conversion cycle. This value should be ZERO. If not then with the frequency counter the gate time is too long and the frequency is too high. But if 32bit values are used (this means the result is fetched with GetFreqCounterL) there is never an Overflow and this function is not necessary.

With the Pulse Timer mode the external pulse is too long because the selected mode expects a shorter pulse. A call to this function also clears the semaphore.

Function GetFreqCountOvrFlow: byte;

FreqCountRestart, FreqCountRestart2

This procedure resets the frequency counter to the initial state, so the next result will be valid. It can and should be used after SetFreqCountMode call for example.

Procedure FreqCountRestart;
GetTimeCounter, GetTimeCounter2

The function GetTimeCounter returns the result (16bit value) of the last pulse time measure cycle. The result must be interpreted depending of the selected mode because it is a fixed decimal point value where the decimal point position depends on the selected mode. If an overflow occurred a $FFFF is returned.

A call to this function also clears the semaphore.

Function GetTimeCounter: word;

GetTimeCounterP, GetTimeCounterP2

The function GetTimeCounterP returns the result (16bit value) the plain counter content of the last pulse time measure cycle. The values Count1 and Count2 contain the timer value counted in the “high“ and “low” time of the cycle. So for example it is possible to get the on/off relation of a PWM cycle. If an overflow occurred a false is returned. The FreqCountMode must be set to PulseMode.
A call to this function also clears the semaphore.
Function GetTimeCounterP(var CountP, CountTot : word): boolean;

Important:

These two function must only be used if the pulse/timer mode is selected. Otherwise the function GetFreqCounter must be used.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\FreqCounter

3.42 FreqCount driver – Frequeny Counter XMega
In some applications a function is necessary which can measure or count an external frequency. This implementation uses one of the eight existing 16bit timer (TimerC0 .. TimerF1) as an pulse counter. With the frequency counter the gate is handled by the SystemTick. This saves resources of the CPU. The timer gate can be set to 100sec, 10sec, 1sec, 100msec and 10msec. The result of the measure cycle is a 16bit value.

The drawback of the SystemTick usage is the somewhat reduced precision of the result and some limitations with the choice of the SysTick value. The inherent precision is in the range of 0.1%..0.2% depended of the processor clock and the SysTick value. The higher the CPU clock and the lower the SysTick value the better the result (within some limits). An optimal result can be achieved with a CPU clock >= 16MHz and a SysTick of 5msec and the ADJ option. If several interrupts are running there can be a jitter in the results.

Some limitations exist when the SysTick value has to be defined. Because of the gate times the following limitations apply:

The SysTick must be 2msec, 5msec or 10msec. 5msec preferred!

100Hz area

resolution
0.01Hz

max frequency
655.35Hz
=
0.65535kHz

gate time
100sec

1kHz area

resolution
0.1Hz

max frequency
6553.5Hz
=
6.5535kHz

gate time
10sec

10kHz area

resolution
1Hz

max frequency
65535Hz
=
65.535kHz

gate time
1sec

100kHz area

resolution
10Hz

max frequency
655350Hz
=
655.35kHz

gate time
100msec

1MHz area

resolution
100Hz

max frequency
6553500Hz
=
6.5535MHz

gate time
10msec

The clock or frequency signal that to be measured must be connected to any Port Pin of Ports A..F.

One of the 8 Event Channels is used.

In the following context an XX denotes one of the Timers C0..F1.

3.42.1 Import & Define FreqCount
Import SysTick, FreqCount_C0, FreqCount_C1, FreqCount_D0, …;

Imports one or more frequency counter. The import of FreqCount_XX also imports automatically several library functions and procedures. The SysTick must also be imported.

The driver needs one of the internal 16bit timer, TimerC0..TimerF1, if it exists.

Define

 //>> CPU
= 32MHz, PeripherX4=32MHz, PeripherX2=32MHz

 OSCtype
= int32MHz,

 PLLmul
= 4,

 prescB
= 1,

 prescC
= 1;

 SysTick
= 5, adj;

{msec} // ,adj

 StackSize
= $0032, iData;

 FrameSize
= $0064, iData;

 FreqCount_D0
= PortD, 0, PullUp;
 // clock input port/pin, PullUp, PullDown, none

 FreqCountEv_D0
= 0;

 // event channel
SysTick
The SysTick should only have the following values: 2msec, 5msec, or 10msec. All other values are rejected.

FreqCount_XX

Defines the 16bit timer usage. The clock input port, pin and pullup must be defined. The PortA..PortF can be used and every pin (0..7) in these ports.
FreqCountEv_XX

Defines the Event Channel to be used (0..7).

3.42.2 Functions, Procedures, Types

Type tFreqCountRange
The import of the driver exports the type tFreqCountRange which is an enumeration. It serves as a select of the gate time of the counter. The following settings are possible:

TFreqBaseNone

TFreqBase100Hz

Frequ = 0.01Hz...655.35Hz
gate time = 100sec

TFreqBase1kHz

Frequ = 0.1Hz...6.5535kHz
gate time = 10sec

TFreqBase10kHz

Frequ = 1Hz...65.535kHz
gate time = 1sec

TFreqBase100kHz

Frequ = 10Hz...655.35kHz
gate time = 100msec

TFreqBase1MHz

Frequ = 100Hz...6.5535MHz
gate time = 10msec

The definition of tFreqCountRange is:

Type tFreqCountRange = (TFreqBaseNone, TFreqBase100Hz, TFreqBase1kHz, TFreqBase10kHz,
TFreqBase100kHz, TFreqBase1MHz);
Var FreqCountSema_XX

This semaphore will be incremented with each new result. Useful not only with MultiProcessing but also with standard applications to save CPU power.

Procedure SetFreqCountRange_XX(range : tFreqCountRange);
With this procedure the gate time of the counter must be set. This must be done at least once at program start. The parameter range is the desired resolution. Please note that at least the first measure cycle after a mode change is invalid. It clears all internal data.
Function GetFreqCountRange_XX : tFreqCountRange;

The function GetFreqCountRange returns as its result the actual resolution of the counter

Function GetFreqCounter_XX: word;

The function GetFreqCounter returns the result (16bit value) of the last frequency measurement cycle. How the result must be interpreted depends on the selected mode because it is a fixed decimal point value where the decimal point position depends on the selected mode. If an overflow occurs an $FFFF maybe returned. A call to this function also clears the semaphore.

Function GetFreqCountOvrFlow_XX: byte;

The function GetFreqCountOvrFlow returns the overflow, if any, of the last conversion cycle. This value should be ZERO. If not then with the frequency counter the gate time is too long and the frequency is too high. A call to this function also clears the Overflow.

Procedure FreqCountRestart_XX;
This procedure resets the frequency counter to the initial state, so the next result will be valid. It clears all internal data.
an example is in the directory ..\E-Lab\AVRco\Demos\XMega_FreqCount

3.43 RFID125 Receiver (XMega only at this time)
RFID RadioFrequencyIDentification is widely used to identify goods, tools, animals, persons etc. Also for access control, electronic locks, for example with keyfobs or plastic cards RFID is mainly used. There are several ways and techniques which mainly differ in the carrier frequency. In our case we use the commonly used 125kHz variant.

The binary number stored in the passive 125kHz transponders has a total length of 64bit. But the usable data length is only 40bit (5 Bytes), where the MSB is the ID of the transponder manufacturer. The other 4 bytes build a unique number which exists only once world wide.

So there are a 2^40 IDs possible.

An RFID125 receiver needs a high quality antenna (coil) and a sensitive receiver chip. Both parts are not expensive and are available in the commerce. But it makes only sense to build an own receiver in high volumina. Because of this the AVRco driver is based on the active antenna TowiTek TWT2021 (Conrad Electronic). This device provides an async/serial output with 9600Bd, 8N1 and works from 3.3V to 5V. With a valid transponder signal every 200msec a 5Byte packet is send to the host.
Though this device works from 3.3V on one must know that the maximal distance from the transponder to the antenna can be 1cm at 3.3V and 5cm at 5V.

Only the Rx channel of the UART is used, so the Tx pins can be used as GPIOs.
Imports

As usual with the AVRco system the driver must be imported and defined. The SysTick is used for TimeOuts.
Import
SysTick, RFID125;

Defines
The UART, the baudrate and the packet size must be defined:
Define
…

 SysTick
 = 10;

// 5msec

 RFID125 = SerPort0, 9600, 5;

// SerPort, Baudrate, Buffersize
XMega

 RFID125 = SerPortD1, 9600, 5;
Driver variables
The driver exports an array with the 5 ID bytes:

Var
 RFIDbuff : array[0..Buffersize-1] of byte;

Functions

There is only one function. It returns a true if a valid ID has been read. With a call of this function the internal Ready becomes a false.

function RFIDready : boolean;

A sample is in the directory ..\E-Lab\AVRco\Demos\XMega_RFID

3.44 RC5 Decoder/Encoder Driver

There are many ways for two units (processors, control devices etc) to communicate. If it is impossible to connect the device with cables there are only a few possibilities for communication; RF, ultrasonic and infrared link. RF must be discounted because of cost, and supersonic is very insecure.

So in most cases an infrared link must be used. Infrared is relatively secure and by using a higher transmission power it is often unnecessary to have a direct line of sight between the transmitter and receiver. The reflections off the walls etc. are sufficient.

The implemented protocol RC5 is commonly used for remote control of TV sets and uses a carrier frequency of 36kHz. With the Standard Mode a telegram (packet) consists of 2 start bits, a so called Toggle Bit, 5Bits address and 6Bits command. With the Extended Mode a telegram (packet) consists of 1 start bit, CMD6, a so called Toggle Bit, 5Bits address and additional 6Bits command, where the command has a totally length of 7 bits. The transmission takes about 25msec.

Standard Mode

S1 S2 TG A4 A3 A2 A1 A0 C5 C4 C3 C2 C1 C0

Extended Mode

S1 C6 TG A4 A3 A2 A1 A0 C5 C4 C3 C2 C1 C0

3.44.1 Receiver

The receiver can be connected to each input-pin. The driver uses a polling scheme. With the Define the polarity of the Rx-pulse can be selected.

Negative = idle value log. 1, pulse log. 0

default setting

Positive = idle value log. 0, pulse log. 1

Defines for the receiver

Define
RC5RXPORT = PinReg, PinNum, polarity
//polarity is optional

RC5mode
= rc_7bit;

//rc_6bit = default

3.44.2 Transmitter

The transmitter must exactly generate a 36kHz carrier so the usage of a timer is mandatory. Because there is only one suitable timer in most AVRs, Timer1 must be used. If present, Timer3 also can be selected. With XMegas every 16bit Timer can be used. The transmit diode or the power stage must always be connected to OC1A (OC3A) timer output, with XMegas the defined OCxx output must be used. The carrier frequency (nominal 36kHz) can be selected between 30kHz and 40kHz as an option.

Defines for the transmitter

Define

RC5TXPORT
= Timer1, polarity, carrier;

//Timer and carrier Frequency is optional

RC5TXPORT
= positive;

RC5TXPORT
= negative;

RC5TXPORT
= positive, 38;

RC5TXPORT
= Timer1, positive;

RC5TXPORT
= Timer3, negative, 36;

RC5mode
= rc_7bit;

//rc_6bit = default

XMega
 RC5TXPORT = Timer_C0, OCA, negative; // timer, Output Comp, pulse polarity, carrier
 Timer_C0, Timer_C1…, OCA, OCB, OCC or OCD

 The define of a Timer and the OCxx pin is mandatory here.
No interrupt is used.

Imports

As usual with AVRco the driver (Rx, Tx or both) must be imported.

Import SysTick, RC5Rxport, ..;

or

Import SysTick, RC5Txport, ..;

or

Import SysTick, RC5Txport, RC5Rxport, ..;

For the receiver part the desired input port (PINx) and the PortPin must be defined.

For the transmitter part the output polarity must be defined:

Defines

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0010, iData;

FrameSize
= $0010, iData;

RC5TXPORT
= negative, 36;

{ opt Timer, pulse polarity, opt carrier freq}

RC5RxPort
= PinD, 7;

{PinD, Portpin 7, opt polarity}

// RC5RxPort
= PinD, 7, negative;
{negative or positive pulse}

RC5mode
= rc_7bit;

// rc_6bit = default

3.44.3 Functions Receiver

Function RecvRC5 (var rxAdr : byte; var rxCmd : byte) : boolean;

This function returns a false after a Timeout of 130msec. Neither variable will be changed. If the function was successful a true is returned and both variables contain the received values. Bit6 (ext mode bit7) in rxCMD contains the Toggle bit.

RxAdr = 0 0 0 A4 A3 A2 A1 A0

RxCmd in Standard Mode
TOG CMD5 CMD4 CMD3 CMD2 CMD1 CMD0

RxCmd in Extended Mode
TOG CMD6 CMD5 CMD4 CMD3 CMD2 CMD1 CMD0

3.44.4 Functions Transmitter

Procedure SendRC5 (const txAdr : byte; const txCmd : byte);

This procedure sends the two bytes via the IR-transmitter. The Toggle bit6 (ext mode bit7) in txCMD must be set or reset by the application.

TxAdr = 0 0 0 A4 A3 A2 A1 A0

TxCmd in Standard Mode
TOG CMD5 CMD4 CMD3 CMD2 CMD1 CMD0

TxCmd in Extended Mode

TOG CMD6 CMD5 CMD4 CMD3 CMD2 CMD1 CMD0

Attention:

Too many or too long interrupts while sending or receiving can corrupt the protocol so that eventually the telegram becomes invalid. With MultiTasking the Scheduler must be disabled while receive or transmit.
Example program and schematic:
an AVR example is in the directory ..\E-Lab\AVRco\Demos\RC5

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_RC5

[image: image35.png]

schematic RC5
3.45 SHT11 Temperature and Humidity Sensor Driver

Overview

Room temperature and humidity are the two essential factors of the room climate. The sampling of these values is important for air conditioning and heating systems. But also the simple display of these values is an important task.

But there are always problems with the relative humidity. All known sensors are extremely imprecise and unstable and many additional parts are necessary. Generally the precision and the response time are very disappointing.

Furthermore both common sensors need OP-amps and reference circuits and a linearization, either in hardware or software.

With the help of the new intelligent sensors from Sensirion now it’s possible measure both values with a superior precision and stability. The linearization is build into the sensor. With temperature the system error is +/- 0.5 (Celsius at room temperature. The humidity error is about +/-3.5%, which is an excellent value. The readouts are very stable. By using parts with tighter tolerance the accuracy can be improved. By implementing some additional linearization algorithms in software the precision can be improved further.

The temperature range of the sensors is from –40grad to +120grad Celsius.

In the end ranges the max. error is +/-3 (Celsius

The humidity range is 0% to 100%RH. Throughout the range the max. error is +/-5%RH

Introduction SHT11drvr

The SHT11 sensor works in the range of 2.5 to 5.5Volt. The connection between sensor and CPU is a two-wire interface similar to the I2C interface but incompatible with this.

The communication uses two control lines (SCK and DATA) which can be connected to any port pins of the CPU. However, the DATA line must be bi-directional (DDR register) and must be pulled high by a pullup resistor of 2..3kOhm.

The data is read and written by a bit serial protocol. After each start command a conversion in the sensor runs. The sensor shows the end-of-conversion by pulling low the data line.

The conversion time for a single value is between 10 and 250msec dependent of the operating voltage and the selected resolution. Because of this in the real world it’s not practicable and makes no sense to wait for conversion complete for up to 250msec after the start command until the data line goes low. There must be more important things to do in the meantime. Because the sensor has a fully static design it pulls low its data line until it sees the first read-clock pulse from the CPU.

So it’s possible to start the conversion, do other jobs and after a time return back and read the state of the data line for READY (SHT11ConvState). With MultiTasking applications the driver sets a semaphore to “1“, if the ready state of the data line appears. By that method the reading process can suspend itself with “WaitSema“. It will be awakened by the Scheduler when the result from the sensor is readable.

Because of this the temperature and the humidity read functions are implemented in two parts, a conversion start part (SHT11startTemp and SHT11startHum) and readout part (SHT11getTemp and SHT11getHum). Before the “SHT11getTemp“ function can be called either the state of the conversion must be polled by “SHT11ConvState“ or the application must use “WaitSema“.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\SHT11

In this directory there is also a helper file that contains additional inearising functions.

Imports

As usual with the AVRco system the driver must be imported and defined.

The SysTick is not used.

Import
SysTick, SHT11drvr;

Defines
The status mode and the two port pins must be defined.

Define
ProcClock
= 8000000;

// 8Mhz clock

SysTick
= 5;

// 5msec

SHT11drvr
= polled [, Delay][, crc];
// polling only

// SHT11drvr
= SysTickChecked;

// polling + semaphore

SHT11clk
= PortD, 5;

// port and pin for clock

SHT11dat
= PortD, 6;

// port and pin for data
SHT11drvr
Defines the polling mode. With “SysTickChecked“ a semaphore will be implemented which can be used to control a process via WaitSema. The polling mode using “SHT11ConvState” is then also useable. The optional parameter “Delay” defines the bit rate (default 0, min 0, max 255).

The optional parameter “CRC” defines whether the SHT11 CRC byte must be readout and stored.

SHT11clk
Defines the port and pin used for the Clock line. The port can be an output only port.

SHT11dat
Defines the port and pin used for the Data line. The port must be a bi-directional port.

3.45.1 Variables
If the “SysTickChecked” mode is defined a semaphore is implemented which can be used by processes in conjunction with WaitSema. The conversion start functions clear this semaphore. In the SysTick this semaphore is set to “1“ if the sensor is ready with the conversion.

Var SHT11sema : Semaphore;
If the option “CRC“ is given in the Define section, a data read out of the SHT11 always includes the CRC byte. This byte then is stored in the location SHT11crc.

Var SHT11crc : byte;
Attention:

If a conversion is running the must be no other sensor access except “SHT11ConvState“.

3.45.2 Functions
SHT11synchronize

Resets the 2-wire interface. Is also called from the system init.

Procedure SHT11synchronize;

 SHT11synchronize

SHT11ConvState

Returns a true if the sensor is ready for read out after a conversion start.

Function SHT11ConvState : boolean;

 repeat

 until SHT11ConvState;
SHT11startTemp

Starts the temperature conversion.

Procedure SHT11startTemp;

 SHT11startTemp;

SHT11getTemp

Reads out the measuring result after a conversion is finished.

Function SHT11getTemp : word;

 Ww:= SHT11getTemp;
SHT11startHum

Starts the humidity conversion.

Procedure SHT11startHum;

 SHT11startHum;

SHT11getHum

Reads out the measuring result after a conversion is finished.

Function SHT11getHum : word;

 Ww:= SHT11getHum;

SHT11getStatus

Reads back the Status/Control register of the sensor. If a $FF is returned the sensor maybe defect or not connected. This check should be made at start up.

Function SHT11getStatus : byte;

 if SHT11getStatus = $ff then

 SensorFailed ...

 endif;

SHT11setStatus

Some special functions of the sensor can be executed e.g. changing the resolution, heater switch etc.

Procedure SHT11setStatus(s : byte);

 SHT11setStatus($01);

// reduce solution to 8/12bit

SHT11softReset

Reset the Status/Control register to its internal default values.

Procedure SHT11softReset;

 SHT11softReset;

// clear status reg to default values

3.46 Sound Generator and Driver

The communication between the controller/electronic and the environment often is an important task. Beside displays, keyboards and computer interfaces sometimes an acoustic signal makes sense or indeed is necessary.

These needs are supported by this Sound Driver. Of course it can’t play music but it is able to generate some fixed sounds and also a variable sound. Furthermore it can generate a desired frequency for a user-defined duration. As a playback device often a small piezo beeper is sufficient, which is connected through a capacitor (1uF) to the desired Port Pin. If more volume is necessary an external audio amp must be added.

Imports

The driver must be imported, as usual with AVRco. It also needs the import of SysTick:

Import SysTick, BeepPort, ..;
Defines
The desired Port and the PortPin has to be declared with a Define:

Define

 ProcClock
= 8000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0020, iData;

 FrameSize
= $0030, iData;

 BeepPort
= PortB, 0;

3.46.1 Functions

There are 8 different Sound functions:

Procedure BeepSiren (const mode : byte; repTimes : byte);

The call of this procedure generates one siren cycle. The kind of the siren has to be defined with the parameter mode (0 or 1). The parameter repTimes defines how often the sound is repeated.

Procedure BeepClick;

This procedure generates a short click.

Procedure BeepOutLH;

Procedure BeepStepLH;

These procedures generate a short inclining sound sequence with 3 or 5 tones.

Procedure BeepOutHL;

Procedure BeepStepHL;

These procedures generate a short declining sound sequence with 3 or 5 tones.

Procedure BeepChirpH (repTimes : byte);

This procedure generates a short declining high sound sequence (chirp). The parameter repTimes defines how often the sound is repeated.

Procedure BeepChirpL (repTimes : byte);
This procedure generates a short declining lower sound sequence (chirp). The parameter repTimes defines how often the sound is repeated.

Procedure BeepOutErr;

This procedure generates a short creaking sound

Procedure BeepOut (Frequ : word; ticks : byte);

This procedure generates a sound with the frequency passed in parameter freq. The minimum frequency is 40Hz; the maximum is 10kHz. Dependant of the processor clock it’s possible that the maximum or minimum frequency is not achievable. With 16MHz both limits are legal. The duration of the sound is determined by the parameter ticks, which counts in SysTicks.

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\Sound

[image: image36.png]<o libusb-win32 Inf-Wizard =loix(

‘Device Selection

Select your device from thelst of detected devices below. If your device isntsted
then either connect it o cick Next” and enter your device descipton manualy.

Vendor D | ProductID | Desaription <

06124 00009 I3

OxI07 0x033 Mass Storage Device

0x046D. OxC30F. Logitech USB Keyboard (Interface 1)

0x046D. OxC30F. Logitech USB Keyboard (Interface 0) o

0x03F0 Ox4E17 HP EWS (Interface 2)

OOF0 OxED Printer (nterface) _';I
>

<Back Next > cancel

schematic Sound
3.47 SysLEDblink

Overview

The controlling of LEDs (Light Emitting Diodes) is a typical job of an embedded system. In most cases this is the first experiment of a beginner because it’s a simple program and the results are visible immediately. A port must be programmed as an output and single bits of this port are set to low or high. Ready!

But if LEDs should be flashed there is a big problem where even professionals run into difficulties. Because LEDs must also blink rhythmically while the program is running and a shortened or prolonged On or OFF time is irritating, basically a free timer is used. In the timer interrupts the blink job must be done. But what to do if no timer is available? Or if a free timer must be reserved for future enhancements? Then there is a huge problem.

Because most applications with the AVRco system import the SysTick this tick can be used. Implementing the CallBack function OnSysTick the LED handling can be done here. But this should be written in assembler in order to avoid unwanted increase of the interrupt disable time by this handler. Furthermore the problem of “register save“ must be considered.

With the arguments above in mind it makes sense to implement the LED blinker as a driver into the system. This driver is linked into the SysTick and does its job completely transparently without any intervention by the application. But note that this driver is a heavy duty job in the systick.

Introduction SysLEDblink

The driver serves as a controller for up to 8 LEDs where each LED can be controlled separately.

The functions exported by SysLEDblink are:

1.
LED on

2.
LED off

3.
all LEDs on

4.
all LEDs off

5.
LED blink on

6.
LED blink off

7.
all LED blink on

8.
all LED blink off

9.
Blinktimer setup in SysTicks

10.
Blink LED x-times

11. Driver On/Off

12. LED 1xblink

The particular LEDs can be distributed to any ports and Pins also the common memory is possible if it is R/W. A simple latch as a port is not possible.

The common blink interval is selectable in a wide range. The polarity of each LED is also selectable e.g. active LOW or active HIGH.

An alternating blinking of some LEDs is possible by changing the basic state (On/Off) of these LEDs. For example if LED1 is ON and LED2 is OFF and both are set to blink so these two LEDs are flashed alternately.

Note:

There is no initialisation of the used ports (DDRx etc). It’s the job of the application to do this in a proper way. In addition this port setup should not be changed by the application at runtime. The driver doesn’t check or support this.

If the function SysLEDflashMsg will be used then also the Message Mode must be imported:

From SysLEDblink Import LEDmessage;

If the function SysLEDflashOnce will be used then it must be imported with:

From SysLEDblink Import FlashOnce;

Implementation

Imports

As usual with the AVRco system the driver must be imported.

Import SysTick, SysLEDblink, ..;

From SysLEDblink Import LEDmessage, FlashOnce, FastBlink;
 // these are options
Defines

the blink rate/interval in SysTick units

up to 8 port registers and portpins PORT, BIT, ACTIVE_LEVEL

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

SysLEDblink
= 30;
{30*SysTick = 300msec}

// alternative

//SysLEDblink
= mSec300;
{10..1000 msec}

SysLEDBlink0
= PortA, 0, high;
{LEDon = high level}

SysLEDBlink1
= PortA, 1, low;
{LEDon = low level}

SysLEDBlink2
= PortA, 2, low;

SysLEDBlink3
= PortA, 3, low;

SysLEDBlink4
= PortA, 4, low;

SysLEDBlink5
= PortA, 5, low;

SysLEDBlink6
= PortA, 6, low;

SysLEDBlink7
= PortA, 7, low;

Attention: at least the SysLEDBlink0 must be defined! There should be no gaps in this defines.
As an alternative to the SysLEDblinkX defines there can be a byte variable in RAM instead of the Port bits:

SysLedPort = @LEDram, $00; // byte-var, polarity
With this define the generated variable then contains the Blink bits which can be passed to a virtual or I2C/TWI port.

Imports and Exports
A SysLEDblink import also imports some bytes which are reserved for the system. The blink handler is linked into the SysTick.

3.47.1 Functions

Procedure SysLEDon (b : byte);

// b= 0..7 LED number
Procedure SysLEDonOff(b : byte; on : boolean); // b= 0..7 LED number
Procedure SysLEDallOn;
Procedure SysLEDoff (b : byte);

// b= 0..7 LED number
Procedure SysLEDallOff;
Procedure SysLEDflashOn (b : byte);

// b= 0..7 LED number
Procedure SysLEDflashOnOff(b : byte; on : boolean); // b= 0..7 LED number
Procedure SysLEDflashAllOn;
Procedure SysLEDflashOff (b : byte);

// b= 0..7 LED number
Procedure SysLEDflashAllOff;

Procedure SysLEDflashMsg (led, msg, rept : byte);
// expects LEDmessage Import

Procedure SetSysBlinkTimer (t : byte);

// t= 2..255

Procedure SysLEDfastBlink (fast : boolean);

// enable/disable fast mode
Procedure SysLEDenable (ena : boolean);

// enable/disable the driver

Procedure SysLEDflashOnce (b : byte);

// b= 0..7 LED number

Details
Procedure SetSysBlinkTimer (t : byte);

// t= 2..255 in SysTicks
Initially the blinkrate (on/off Time) must be set by the define SysLEDblink, but the blinkrate can be changed at runtime with this function.

Procedure SysLEDfastBlink (fast : boolean);

// enable/disable fast mode
The blinkrate can be switched to fast or normal without changing the timer value.

Procedure SysLEDenable (ena : boolean);

// enable/disable the driver
The processing of the LEDs and their timers is done in the SysTick. This consumes CPU power/time. If none of the blink functions is used then blink handling can be completely disabled temporary.

Procedure SysLEDflashMsg (led, msg, rept : byte);
 // expects LEDmessage Import

This function for example supports the blinking of an error message. The parameter led defines the LED that must be used. The parameter msg defines the count of blinks of this telegram, where the max value is 126. The parameter rept defines how often this telegram must be repeated. The value “255“ forces an unlimited repeat. In this case the blinking must be aborted with the function SysLEDflashOff or SysLEDflashAllOff

Note:

only one LED can show a message at a time.

Hint:

It is possible to give each LED a name. Example:

Type myLEDs = (LEDenter, LEDexit, LEDpower);

This enumeration now can be used with the functions above:

SysLEDflashOn (byte (LEDpower));

This is another way:

Const

LEDenter
: byte
= 0;

LEDexit
: byte
= 1;

LEDpower
: byte
= 2;

These constants now can be used with the functions above:

SysLEDflashOn (LEDpower);

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\SystemLEDs

3.48 Line Printer Driver LPTport
Also with embedded applications sometimes it is necessary to control a printer in order to print out information, measurement results or other data on paper. In most cases these printers provide a serial interface, but some printers are equipped with the old fashioned but still used parallel-interface, also called the Centronics Interface.

The Centronics Interface consists of an 8bit dataport and an 8bit controlport. Basically the dataport always is an output type while the controlport has state lines (input) and also control lines (input/output). The LPTport driver implements this standard configuration. In addition there are some support functions that allow a bi-directional service.

The driver always uses 2 complete 8bit ports. The driver implements either two bi-directional ports of the AVR or the Philips I2C dual-port chip PCA9555. The PCA can be controlled through the software I2Cport and also with the TWIport of the AVRco.

The operation mode of the LPTport driver must be selected by its import and its define.

Imports

As usual with the AVRco the driver must be imported:

Import SysTick, LPTport, ..;

The operation mode AVRport, I2C or TWI must be set by the Define. Example for the port mode:

Define

 ProcClock
= 8000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0010, iData;

 FrameSize
= $0010, iData;

 LPTport
= PortA, PortB;
// DataPort, ControlPort

If the TWI mode is used then the TWI driver must also be imported:

Import SysTick, TWImaster, LPTport, ..; // TWInetMaster is also possible

Define

 ProcClock
= 8000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0010, iData;

 FrameSize
= $0010, iData;

 TWIpresc
= TWI_BR400;

 LPTport
= TWI_I2C, $24;
// $24 = TWIaddr

XMega

Import SysTick, TWI_C, LPTport, ..; // TWI_D, TWI_E, TWI_F are also possible

Define

OSCtype = int32MHz, PLLmul=4, prescB=1, prescC=1;

SysTick
= 10;

{msec}

StackSize
= $0020, iData;

FrameSize
= $0040, iData;

TWIprescC
= TWI_BR400;

LPTport
= TWI_C, $24;

// $24 = TWIaddr

If the Soft-I2C mode is used then the I2Cport driver must also be imported:

Import SysTick, I2Cport, LPTport, ..;

Define

 ProcClock
= 8000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0010, iData;

 FrameSize
= $0010, iData;

 I2Cport
= PortA;

 I2Cclk
= 0;
// bit0, porta

 I2Cdat
= 1;
// bit1, porta

 LPTport
= Soft_I2C, $24;
// $24 = I2Caddr

3.48.1 Functions and Types

The driver exports 2 types:

Type

 tLPTlines
= (lpStrobe, lpError, lpInit, lpSelect, lpACK, lpBusy, lpSelected, lpPaper);

 tLPTlineSet
= BitSet of tLPTlines;

The enumeration type tLPTlines exactly corresponds with the lines/connections of the control port.
	databit #
	connector

	0
	2

	1
	3

	2
	4

	3
	5

	4
	6

	5
	7

	6
	8

	7
	9

	Name
	Bit #
	dir
	active
	connector

	lpStrobe
	0
	output
	low
	1

	lpError
	1
	input
	low
	15

	lpInit
	2
	output
	low
	16

	lpSelect
	3
	output
	low
	17

	lpACK
	4
	input
	low
	10

	lpBusy
	5
	input
	high
	11

	lpSelected
	6
	input
	high
	13

	lpPaper
	7
	input
	high
	12

The BitSet tLPTlineSet contains the above 8 bits in a byte.

Functions

Procedure LPTinit;

Initialises the printer by the Init line and the Select line. Should be called before each printing cycle.

Procedure LPTreset;

Generates a short pulse on the Init line and resets the printer.

Function LPTstat : tLPTlineset;

Returns the state of the control port. Please note that the result always includes the active states of the lines and not the binary state. If the ACK is active (=0) the lpAck bit in the result is set. If the lpBusy line is active (=1) then the lpBusy bit in the result is set.

The application can start printing only when the lpSelected bit is active and the lpPaper bit is inactive.

Procedure LPTout (dat : byte);

This is the printing function. This function immediately returns without any further operation when the lpSelected line is inactive. Otherwise it waits until the lpBusy line is inactive and then sends the byte to the printer.

LPTinit;

Repeat until (lpSelected in LPTstat);

WriteLn (LPTout, ’Hello’);

Support Functions

The following functions and procedures are not necessary for the printer operations but are reserved for special implementations like bi-directional data transfers.

Procedure LPTctrl (ctrl : tLPTlineSet);
Controls the control port and the control lines to the printer.

Procedure LPTdir (inp : boolean);

Controls the data direction of the data port. True = output, false = input.

Function LPTinp : byte;
Reads the data port.

Example program and schematic:

an example is in the directory ..\E-Lab\AVRco\Demos\I2C_LPT

an XMega example is in the directory ..\E-Lab\AVRco\Demos\XMega_LPT

[image: image37.png](Dfemde4]

Stest——

Scenser—

ke8]

Sevaoa s8I —————————at

Clrtaborsd—————————————————exc.

Crstabersf————————————————exc.

& EvaBoard_USB128 inf
ibushwind2bnREABME— t4

schematic I2C_LPT
3.49 Banking Port

With some kinds of application there is a need to hold a huge amount of variables as constant and fast access to the program. A file system can help, but because of its complexity it is not very fast and handling is also not so easy as a simple access to a common variable.

Between the linear address area of the AVR and a filesystem there is a memory extension called banking system.

Here a theoretically practically unlimited memory expansion can be implemented with mapping a small part of the large external memory into the standard address area of the CPU. The external memory is divided into equal sized parts. Hardware connects a part (bank) under software control into a free memory area.

The user can place all types of variables into such a bank and can access them fully transparently without any interventions (except pointers to bank vars, see below). In order to populate the different banks with any variables, the user must define where (in which bank) a specific var resides. This must be done with the compiler switch {$BDATA #} where # is the desired bank number.

In this banking implementation up to 16 banks with 32kB each can be defined and accessed. This results in an additional memory size of 512kBytes.

In general, the external Device can be a data storage type of any kind. The device is logically divided into

up to a maximum of 16 banks, where each bank has a size of 32kBytes. The user must implement the hardware drivers for read a byte and write a byte, where the system provides a relative address (0..$7fff) and a banknumber (0..15).

The user's drivers must generate an appropriate access to the storage using these 2 parameters. Address mapping and combining the bank number with the relative address in any fashion is possible. So this schema can also used for flashcards or floppies.

Restrictions
Complex arrays and records are not supported (arrays of records, arrays in records etc).

 Strings:

In general only string copy and string manipulation (indexed) is implemented.

No string concat with a banked string in source or destination like:

st:= banked_string + 'abc';

No string conversions with a banked string in source or destination like

int:= StrToInt (banked_string);

or

banked_string:= IntToStr (num);

Imports
The driver must be imported as usual with AVRco.

Import SysTick, BankPort, ..;

Defines

the BankPort bank count in 32kByte pages

Define
ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0030, iData;

FrameSize
= $0030, iData;

BankPort
= 3;
{Bank Ports}

Populate

The additional Bank pages are populated with variables by using the compiler switch "{$BDATA x}, here x is the bank number for the following defines.

{$BDATA 0}

var

 bb0 : byte;

 ww0
: word;

{$BDATA 1}

var

 bb1
: byte;

 ww1
: word;

3.49.1 Implementation
The "UserDevice BankDevIni" special procedure should be used to perform any initialisation necessary.

UserDevice BankDevIni; // Bank Device init

begin

 (* is called at System Init Time *)

 (* initialize Device Hardware *)

end;

Implement the "UserDevice BankDevInp" special procedure. The desired data address is passed in a word argument and the bank number as a byte. The procedure must return a byte value

UserDevice BankDevInp (bank : byte; adr : word) : byte;

begin

 ...

 return(xxx);

end;

Implement the "UserDevice BankDevOut" special procedure. The bank number is passed in the first parameter as a byte. The desired data address is passed in the second argument = word. The Byte-value to write to the external DATA is passed in the third argument

UserDevice BankDevOut (bank : byte; adr : word; arg : byte);

begin

 ...

end;

Special access cases:

Banked variables in expressions etc. which are referenced by their names are handled like others. The compiler knows where they reside and generates a banked access. Because pointers are always 16bits there is no information about the memory area that it should point to. So a pointer implies always an access into the CPU's linear address area from 00..$FFFF.

The user can assign the address of a banked var to a pointer like:

ptr:= @banked_var;

But if the pointer is now dereferenced like:

ptr^:= xxx;

there is no information that a banked area should be addressed. The user must tell the compiler this with: Function BankDevPtr (bank : byte; ptr : pointer) : pointer;
e.g.:

BankDevPtr(bank#, ptr)^:= xxx;

xxx:= BankDevPtr(bank#, ptr)^;

Now the pointer is redirected into the bank represented by "bank#" and the access goes into a bank.

Another special case is when a banked var is passed to a procedure or function by its address like:

Procedure func_name (var bbbb : byte);

e.g.:

Func_name (banked_var);

The called procedure/function expects a byte represented by its address. If the calling statement passes a banked var, the function can't know that the received address should point into the banking area, where the original var resides. The passed address can be interpreted as a pointer to byte. But unlike a pointer, which is dereferenced using: ptr^, a var parameter is only deferenced by its name, the "^" is not used. In Pascal the compiler knows these circumstances.

Therefore the above used construction "BankDevPtr" is not applicable here! So within such a function the user must declare such a VAR-parameter to a banked-Var-parameter with

 ^Bank[bank#].var_name:= xxx;

The driver only provides a single function:

Function GetBankNum(bankedVar) : byte;

The function returns the bank number of the banked variable “bankedVar“.

For clarification please carefully read and analyse the test program for banking in the directory

..\E-Lab\Demos\Banking

3.49.2 Hardware Example

In the example given in the test program and the schematics below the banks always reside at address $8000..$FFFF.

An external 512kByte SRAM (16 banks) is implemented. The first physical bank is used as a XDATA area and therefore not useable for the banking scheme. The advantage of this is that standard memory as XDATA doesn't produce any overhead compared to banking.

If the XDATA page is used, the banking cannot use bank 0. Because of this, in this example the passed bank number must be incremented by one. So the logical bank0 is mapped into the physical bank1 etc. etc.

Another simple way to use the XDATA is do not use the logical bank0 ($BDATA 0}.

If XDATA is used, please note that interrupts can access the XDATA area. If so, the interrupt must be disabled for the duration of the bank access. On exiting the drivers it must be guaranteed, that always bank0 is addressed.

Because there must be any way to generate the additional addresses necessary for the 512kB SRAM, a banking port is implemented at address $7FFF (memory mapped). This can be a simple latch, a PLD etc. If there are some pins free in the CPU's ports, these pins also can be used to generate the required address lines.

In this example each bank starts at location $8000 so this constant must be added to the address passed.

program BankTest;

Device = 90S8515, VCC=5;

Import SysTick, BankPort;

From System Import ;

Define

 ProcClock
= 6000000;
{Hertz}

 SysTick
= 10;
{msec}

 StackSize
= $0064, iData;

 FrameSize
= $0064, iData;

 BankPort
= 3;
{Bank Ports}

Implementation

{--}

{ Var Declarations }

{$IDATA}

var bb : byte;

{$BDATA 0}

// variables into bank 0

var bb0 : byte;

{$IDATA}

{--}

{ functions }

(* for a BankDevice import the following 3 function must be implemented *)

UserDevice BankDevIni; // Bank Device init

begin

 (* is called at System Init Time *)

 (* initialize Device Hardware *)

end;

UserDevice BankDevInp (bank : byte; adr : word) : byte;

begin

 ...

 return(xxx);

end;

UserDevice BankDevOut (bank : byte; adr : word; arg : byte);

begin

 ...

end;

{--}

{ Main Program }

begin

 EnableInts;

 loop

 NOP;

 endloop;

end BankTest.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\Banking

[image: image38.png]md64]
CJheE]
= Evabond SBT3

schematic BankPort
[image: image39.png]E-LAB Test USB Devi

XMiniUSBApD

XMiniUSBAPP

E-Lab Computers

3148323236340A06001600

Endpoint1-Tx Endpoint1-Rx Control I/0
write packet size read packet size Endpoint0 communication
iz iz writePort read Port
write packet count read packet count rz r
o0 o0 e =
Bytes written Bytes read Os O
B @ [t} =
§ rs =
Time elapsed Time elapsed
re =
Oomsec Oomsec
r1 =
kBytes/sec kBytes/sec ro I
[[
wiite | read write read | D Beep
RESET B soeeaest info

Hexit |

schematic AVRRamDisk

3.50 Flash Downloaded/Writer

3.50.1 Overview

The new AVR CPUs (mega8, mega16, mega128 etc) allow changes of the onChip Flash content at runtime by the application program. This opens many new possibilities for programmer from a simple change of ROM-constants and Code-modification up to download of an updated or new application.

For this purpose the new CPUs provide the epode SPM (StoreProgramMemory) and a specific area in the Flash memory, the so-called BootLoader Section. With the help of the SPM instruction writing into the Flash is possible now. The SPM instruction itself normally can only reside and be executed in the BootLoader section.

It is essential that all the operations concerning the SPM instruction always use a block of bytes (page). With the mega128 this blocksize is 128Bytes. Furthermore each access into such a page must be Word-based.

AVRco supports these features of the new ACR CPUs with the Import instruction Import FlashWrite and the Compiler switches {$BOOTRST $nnnn}, {$PHASE BOOTBLOCK $nnnn} and

{$DEPHASE BOOTBLOCK}.

In addition two new library groups (drivers) are implemented: FlashWrite at Runtime and FlashDownLoad at Runtime.

Import

In order to use these library functions the group FlashWrite must be imported:

Import SysTick, FlashWrite, ..;

Please observe that this import must be placed at least at the second position in the importlist. This import generates a word variable FLASH_ADDR at the beginning of iData. If the Flash is larger than 64kB an additional byte variable FLASH_PAGE is generated. These variables are used by all internal FlashWrite functions and must not be changed when such operations are running (with one exception). Otherwise they can be freely used by the application.

3.50.2 Compiler Switches

{$BOOTRST $nnnn}

This switch informs the Debugger/Simulator E-LAB AVRsim whether the Hardware Reset uses the vector at Addr $0000 or the reset jumps into the Bootblock. The parameter $nnnn defines, if activated, the Reset Jump address for the Simulator at reset time. With the real CPU the Fusebit BOOTRST programmed by the InCircuit Programmer defines the behavior of the CPU with a hardware reset. This switch is meaningless for the generated program and therefore also has no influence of the working of the CPU itself. The address parameter can be arbitrary, but only makes sense if it corresponds to the possible Jump addresses of the used CPU. This switch must be placed after the Device declaration.
mega8 $nnnn = $0C00, $0E00, $0F00, $0F80;

mega16 $nnnn = $1C00, $1E00, $1F00, $1F80;

{$PHASE BOOTBLOCK $nnnn}

This switch assigns the following Code Block to the address $nnnn and up. In addition it serves to inform the Simulator to allow normally flagged Stack- and Frame Pointer manipulations. If the switch $BOOTRST is activated, address parameters of both these switches should be identical. The above address ranges are also valid here. If the FuseBit BOOTRST is active and the Reset Jump of the CPU is the same as this address parameter, the first statement after this switch is also the first statement executed after a hardware reset.

{$DEPHASE BOOTBLOCK}
This Compiler switch closes the Bootblock and is mandatory. It installs the FlashWrite drivers into the BootBlock where they must reside, because the SPM instruction only works in this section. The following code and/or statements are placed normally, i.e. they are appended to the code that was generated before the switch {$PHASE ...}.

3.50.3 BootApplication

{$BootApplication $nnnn} with XMegas {$BootApplication}
As an alternative for including the BootBlock into the application, with this switch it is possible to write an application which only contains code for the boot area and completely runs in the boot area. This switch must be placed after the Device declaration.
3.50.4 FlashWrite at Runtime

The implemented functions support the modification of single bytes or whole code pages in the Flash memory. Be aware that the recent CPUs only can read/write entire pages (32..128 words). Furthermore only words can be placed into such a page and they must be placed on an even address.

XMegas: These function are not recommended for use with XMegas. Use FlashDownloader instead.

3.50.4.1 Functions

FlashInitPage

FlashInitPage(const addr : LongWord) prepares a page for further operations. The parameter addr is a byte address and must be a constant. A manipulation of this constant at call time (e.g. addr + 2) is not possible. It is not absolute necessary that this parameter points to a page boundary. Normally addresses of ROM-constants are passed. The parameter will be placed into the variables FLASH_ADDR and if necessary in FLASH_PAGE. This function should be called each time before a new page is opened.

Procedure FlashInitPage (const addr : LongWord);

FlashReadPage

Reads the Flashpage, where FLASH_ADDR points to, from ROM into the temporary CPU Buffer. Then the buffer contains an exact copy of the Flashpage. The content of the temporary buffers now can be manipulated with WritePage. Attention: a FlashProgPage or FlashErasePage implies also an erase of this buffer.

Procedure FlashReadPage;

FlashClearPage

Erases the temporary buffer of the CPU with $FF.

Procedure FlashClearPage;

FlashWritePage

Writes a word into the temporary buffer of the CPU. The variable FLASH_ADDR serves as an address/pointer into this buffer. Bit0 is ignored. This variable defines the destination address of this operation. Because of this an operation like:

inc(FLASH_ADDR, 2);

is allowed and also necessary in order to manipulate the buffer pointer. But bear in mind that this pointer must never exceed the page boundary, otherwise a crash is certain.

Finally this function always increments the pointer FLASH_ADDR by 2. Because of this the variable FLASH_ADDR must be set to its original value after all buffer accesses are finished.

Procedure FlashWritePage (const parm : word);

FlashErasePage

This procedure directly erases this page in the Flash that FLASH_ADDR points to. The temporary buffer is automatically cleared. Note: before programming the content of the temporary buffer into the Flash with FlashProgPage, the target page should be erased with FlashErasePage. If the target page is already erased (i.e. free Flash memory) or the desired locations contain $FF the erase can be skipped.

Procedure FlashErasePage;

FlashProgPage

The temporary buffer of the CPU will be programmed into the Flash memory. The variable FLASH_ADDR again determines the target page. The temporary buffer then automatically becomes erased with $FF.

Procedure FlashProgPage;

FlashReadFuses

The Fusebits of an AVR can be read back at runtime with this function. The parameter FuseGroup defines the byte that must be read. Which value is valid for a specific fuse byte must be read in the datasheet of the used AVR. The parameter FLASH_ADDR is not used by this function.

Function FlashReadFuses (FuseGroup : byte) : byte;

FlashWriteFuses

The Fusebits of an AVR can be written at runtime with this function. The parameter FuseGroup defines the fuse byte which must be written. Which value is valid for a specific fuse byte must be read in the datasheet of the used AVR. At this time only the LockByte is accessible and also bits can be programmed to 0 but not to 1. The parameter FLASH_ADDR is not used by this function.

Procedure FlashWriteFuses (FuseGroup, fsBits : byte);
FlashCopyF2R

If parts of already programmed pages must be changed, e.g. only a byte, then a Page Erase is still mandatory. The content of this page then must be saved, the page must be erased, the changes must be done in the saved page and then this page must be re-programmed into the Flash.

The function FlashCopyF2R copies the flash page where FLASH_ADDR points to into the buffer in RAM where the parameter p points. The RAM buffer must be capable (size) to hold one flash page (mega128 = 256bytes).

Now the application can manipulate the content of the RAM buffer.

Procedure FlashCopyF2R (p : pointer);
FlashCopyR2F

This function copies flash page previously saved with FlashCopyF2R into the temporary buffer of the CPU.

This buffer now can be restored into the flash page with FlashProgPage.

Procedure FlashCopyR2F (p : pointer);

const

 StringC[$10200] : string = 'AF_ZKG';

{$IDATA}

var

 ar : array[0..255] of byte;

{$Validate FLASHERASEPAGE *)

{$Validate FLASHPROGPAGE *)

{$Validate FlashCopyF2R }

{$Validate FlashCopyR2F }

{$PHASE BootBlock $0F000}

Procedure FlashProg; // at $0F000

begin

 // dummy

end FlashProg;

{$DEPHASE BootBlock}

// main

begin

 FlashInitPage (ADDR(StringC));

 FlashCopyF2R (@ar);

 // ... do the changes in “ar”

 FlashErasePage;

 FlashCopyR2F (@ar);

 FlashProgPage;

 ...

3.50.5 Usage of FlashWrite

3.50.5.1 Implementation

Calls to FlashWrite functions can be done from everywhere in the program. The only condition is that after the compiler switch

{$DEPHASE BOOTBLOCK}

there are no further FlashWrite calls. Because of this there are three possible implementations of FlashWrite:

1. FlashWrite in common Code Area

Call the driver functions before the definition of the BootBlock:

Procedure WriteTest;

begin

 FlashInitPage (Addr (KeyLookUp));

 FlashReadPage;

 FlashErasePage;

 FlashWritePage ($5857);

 inc (FLASH_ADDR, 2);

 FlashWritePage ($5A59);

 FlashProgPage;

end WriteTest;

Procedure ABC;

begin

 ...

end;

{$PHASE BootBlock $01F80}

{$DEPHASE BootBlock}

// inserts Flash drivers at $1F80

2. FlashWrite within the BootBlock

{$PHASE BootBlock $01F80}

Procedure WriteTest;

begin

 FlashInitPage (Addr (KeyLookUp));

 FlashErasePage;

 FlashWritePage ($5857);

 inc(FLASH_ADDR, 2);

 FlashWritePage ($5A59);

 FlashProgPage;

End WriteTest;

{$DEPHASE BootBlock}

3. Validation

// validate the used driver functions before the BootBlock is defined

{$Validate FLASHREADPAGE }

{$Validate FLASHERASEPAGE }

{$Validate FLASHPROGPAGE }

{$Validate FLASHWRITEPAGE }

{$PHASE BootBlock $0F000}

{$DEPHASE BootBlock}

(* main *)

FlashInitPage (Addr (KeyLookUp));

FlashErasePage;

Type 3 is the most versatile way because the driver calls can be from nearly anywhere in the application.

Notes

As described above, a write access into the temporary buffer of the CPU must be word aligned (even addresses) and the parameter must be a word. This buffer always resides at page boundaries (mega16: 128Bytes or 64 words).

All operations use the internal variable FLASH_ADDR. When manipulating this value pay attention to the page boundaries. Do not exceed them. If it is necessary, use the procedure FlashInitPage.

Also take care of the correct settings of the BOOTSZx fusebits. With an incorrect setting every Flash operation of the driver is inhibited.

3.50.5.2 Rewrite a Page completely

No flash bit or byte can be written from 0 to 1. If this is necessary then the entire page must be erased to $FF. If a Flash page must be completely rewritten or in a completely filled page a single byte must be changed a trick must be used. In the early times (Mega163) it was possible to read a page into the temporary buffer, then erase the flash page, then manipulate the buffer and then write back the buffer into the flash. Now this processing is not possible anymore. All current AVRs delete their temporary buffer if a page erase or a page program is executed. The previously read back buffer is emptied before it is possible to write it back to the flash.

A work-around is to read the desired flash page into the RAM and not into the temporary buffer. Then execute the page erase, then copy the RAM buffer content into the temporary buffer and the execute the page program. This is supported by the driver functions FlashCopyF2R and FlashCopyR2F
Program WriteTest;

{$BOOTRST $0F000} {Reset Jump to $0F000}

Device = mega128, VCC=5;

Import FlashWrite;

From System Import longword;

Define

 ProcClock
= 16000000; {Hertz}

 StackSize
= $40, iData;

 FrameSize
= $80, iData;

Implementation

{$IDATA}

{--}

{ Type Declarations }

type

{--}

{ Const Declarations }

const

 StringC[$10200] : string = 'AF_ZKG';

 // example how a fixed const can be

 // placed into the bootblock below

 BootConst[$1FFFC] : word = $1234;

{--}

{ Var Declarations }

{$IDATA}

var

 bb
: byte;

 ww
: word;

(**)

(* Because all system Flash Write functions must be
*)

(* placed into the BootBlock part of the Flash we must
*)

(* import the used functions by the "validate" switch
*)

(**)

{$Validate FLASHREADPAGE }

{$Validate FLASHERASEPAGE }

{$Validate FLASHPROGPAGE }

{$Validate FLASHWRITEPAGE }

{$Validate FlashReadFuses }

{ $Validate FlashWriteFuses }

// The definition of the correct BootBlock location

// is a must because all FlashWrite operation can only

// be executed from this area.

// "FlashProg" is an unused dummy function.

// It is not necessary but shows that there

// can be also user functions in the bootblock

{$PHASE BootBlock $0F000}
// !!!!!!!!!!!!!!

Procedure FlashProg;
// at $0F000

begin

end FlashProg;

{$DEPHASE BootBlock}
// !!!!!!!!!!!!!!

{--}

{ Main Program }

begin

 // read the fuse and lockbits

 bb:= FlashReadFuses (1);
 // lock bits

 bb:= FlashReadFuses (0); // Fusebits 0

 bb:= FlashReadFuses (3); // Fusebits 1

 bb:= FlashReadFuses (2); // Fusebits 2

 // Flash manipulations

 FlashInitPage (ADDR (StringC));

 // either do a FlashReadPage

 FlashReadPage;

 // or do a FlashErasePage

 FlashErasePage;

 // but not both at the same time

 ww:= FLASH_ADDR;

 FlashWritePage ($4203);

 inc (FLASH_ADDR, 32);

 FlashWritePage ($4443);

 FLASH_ADDR:= ww;

 FlashProgPage;

 loop

 Nop;

 endloop;

end WriteTest.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\FlashWrite

3.50.5.3 FlashDownLoad at RunTime

In contrast to FlashWrite there are no functions published which the application can call, but a DownLoad Monitor is implemented. With the help of this Monitor it is possible to download the entire Flash and burn it into the Flash memory, except the Boot area. The only condition is that there is hardware that supports the transfer, and the user provides some support routines. With this, remote Updates of the firmware by PC, modem etc. are possible without problems.

To use FlashDownLoad the library group FlashWrite must be imported:

Import SysTick, FlashWrite, ..;

Please observe that this import must be placed at least at the second position in the importlist.

The programmer must provide 4 functions:

FlashLoaderInit, FlashLoaderRecv, FlashLoaderTransm and (optional) FlashLoaderExit.

Support functions

FlashLoaderInit

This procedure must be provided by the user. Its job is to initialise the interface that should be used by the DownLoad Monitor. There is no restriction of the kind of the interface. Its only job is to send and receive bytes. Please note that interrupts are not possible here.

This function is a CallBack, so this is true: no local variables
Procedure FlashLoaderInit;

FlashLoaderRecv

This procedure must be provided by the user. Its job is to fetch a byte from the interface and pass it back to the caller as the result. Because this procedure should be written in assembler the result must be put into register _ACCA (R17). A RETURN statement is not implemented.

This function is a CallBack, so this is true: no local variables
Procedure FlashLoaderRecv;

Attention:

If additional registers must be used, then the registers _ACCB/R16, _ACCALO/R18, _ACCAHI/R19, _ACCCLO/R30 and _ACCCHI/R31 must not be used unless they are saved and restored by the user.

FlashLoaderTransm

This procedure must be provided by the user. Its job is to pass a byte to the interface and transmit it. Because this procedure should be written in assembler the parameter is passed to the procedure in register _ACCA (R17). This function is a CallBack, so this is true: no local variables
Procedure FlashLoaderTransm;

Important:

If additional registers must be used, then the registers _ACCB/R16, _ACCALO/R18, _ACCAHI/R19, _ACCCLO/R30 and _ACCCHI/R31 must not be used unless they are saved and restored by the user.

FlashLoaderExit

This procedure can be provided by the user as an option. Its job is to do a System Restart after a successful download. This Restart normally is done with a JMP/RJMP to the Reset Vector at address SYSTEM.VectTab. If the system doesn’t find this procedure the loader does a JUMP to 0000h = SYSTEM.VectTab if it terminates.

Procedure FlashLoaderExit;
Remarks:

These user-supplied functions can reside anywhere in the ROM/Flash area, but it is convenient to place them into the BOOTBLOCK so the Download cannot overwrite them.

Usually the CPU-internal I/Os e.g. UART, SPI, CAN, I2C or Ports are used for the communication with the Host. But also external interfaces can be used without problems.

It is impossible to run these drivers with interrupts as the vector table (or at least the corresponding interrupt drivers) are overwritten during download.

Loader identification

In most cases the Loader Program is programmed once into the target CPU and remains unchanged at least for a long time. Because of this it’s a good idea to place the hardware revision (or similar) of the board or system into it. This 16bit number can be interrogated before a download to make sure that the downloaded firmware is executable on this hardware. This number is included into the machine code as an immediate constant when the BootLoader is generated. This must be done by the definition of a global constant named „DownLoaderID“:
Const DownLoaderID : word = 010213;

If this constant is not defined this value is stored with $0000 in the Loader. The ID-number can be recalled at runtime from the loader using the command ‚i’. i The Host requests the DownLoader ID.

There are upto 4 possible ID-words which then are sequential uploaded with the i-command:

const

DownLoaderID : word = $1234;

DownLoaderID1 : word = $5678;

DownLoaderID2 : word = $9ABC;

DownLoaderID3 : word = $DEF0;

Security

In order to disable unauthorized read back of the Flash or EEprom content through the Loader there must be an optional password defined:

Const DownLoaderPWD : word = $1A2B;

If a password is defined the upload tool must always provide this password if any upload command is used.

3.50.5.4 FlashDownLoader Functions

FlashDownLoader

The Download Monitor is hidden behind this procedure. Calling this procedure disables the global interrupt, the StackPointer is initialised to top of Ram, as is the normally unused FramePointer. The variable FLASH_ADDR and possibly FLASH_PAGE are initialised. After this follows the buffer for Up- and Downloads. The size of this area is an array[0..PageSize-1] of byte; The RAM memory between this array and the Frame is left free and is unused.

After the internal initialisation of the Loader a call to the user supplied procedure FlashLoaderInit follows. If the Loader gets back control over the system, it loops in its command loop. This means it calls continuously the function FlashLoaderRecv and interprets the received commands and parameters. Each command is acknowledged by the Loader at least with a handshake byte through the procedure FlashLoaderTransm.

If the Loader receives the Exit command it jumps to the user supplied optional procedure FlashLoaderExit and closes itself. If the system doesn’t find this procedure the loader does a JUMP to 0000h if it terminates.

Procedure FlashDownLoader;

FlashDownLoader Commands

The Loader knows several commands. They consist of an ASCII character and possibly some following parameters. Each commands is answered by a CR ($0D or #13) after execution. Exceptions from this are Block Transfer Commands. Commands are always send from Host to Loader. The Loader only executes them. Except for Initialisation each action must be initiated by the Host.

The commands of the Host can set a Page Address, up or download a page, erase a page in the Flash, read a page from Flash into the buffer and burn the buffer into the Flash.

A substantial part is the request for the Loader State/Parameter with the ? command. With this the Host finds out which CPU-ID the target has, the size of the Flash Pages and where the BootBlock starts. All parameters that determine sizes and addresses are word parameters. This means that the parameter itself doe not have to be a word, but it counts in words. If, for example, the Loader returns a Page size of 64, it means 64 words (or 128 bytes). The same is true for the Address command of the Host. If the command A is followed by a 256, the Loader must change its Page address to 256. This is the address 512 when counted in bytes. The Host program must observe this absolutely.

Example program:

an example is in the directory ..\E-Lab\AVRco\Demos\SelfProg

Host Program

The installation of AVRco contains a PC-based DownLoader Program FlashLoader.exe.

This is documented in ..E-Lab\DOCs\DocuTools.pdf in the chapter "Flash Down Loader / Writer".

Here only the communication protocol again:

FlashLoader Command List
?
Host requests Loader ID.

Loader responds with

FD
FlashDownLoader

A
Host sends page adr in word representation. All action relate to this Page

aa1
page addr loByte

aa2
page addr hiByte

Loader responds with

CR
Command executed

B
Host sends EEprom adr in byte representation and EEprom data (byte).

aa1
EEprom adr loByte

aa2
EEprom adr hiByte

data
1 Byte into EEprom

Loader programs this byte into the EEprom and responds with

CR
Command executed

C
Host sends EEprom adr in byte representation.

aa1
EEprom adr loByte

aa2
EEprom adr hiByte

If an (optional) password is given (see below) the Host must then send the correct password:

pw1
Password loByte

pw2
Password hiByte

Loader reads the EEprom byte from this address in the EEprom and sends it back as the response

D
Host stores a new Page of Flash data into the Loader’s buffer

XMega 2bytes blocksize in Bytes lo/hi byte
data
following (ps x 2) bytes = Pagesize x 2 (mega8..meg16 = 128bytes)

Loader stores this Page into its array and builds an 8Bit checksum by adding all bytes.

Loader sends the computed checksum as a result of the operation to the Host:

cc
Checksum

E
Host requests erase of the actual Page

Loader erases the actual Page in the Flash and responds with

CR
Command executed

I
Host requests Loader Info.

Loader responds with

I
Info ID = Loader-ID, see below

id1
hiByte Processor ID

id2
midByte Processor ID

id3
loByte Processor ID

ps
words pro page

bs1
Bootblock start addr lobyte \

bs2
Bootblock start addr hibyte / = Bootblock start addr in word count

bs3
Bootblock start addr extbyte / = Bootblock start addr in word count if Flash > 128KB

P
Host request programming of the Loader’s buffer into the Flash
Loader overwrites the actual Page in the Flash with the content of its buffer. A verify is not implemented.

The Loader responds with:

CR
Command executed

U
 XMega UserRow programming.

CR
Command executed
aa1
page adr loByte

aa2
page adr hiByte

aa3
Page Extend Byte

The Loader responds with:

CR
Command executed
data
following (ps x 2) bytes = Pagesize x 2

Loader stores this Page into its array and builds an 8Bit checksum by adding all bytes.

Loader sends the computed checksum as a result of the operation to the Host:

cc
Checksum

R
Write downloaded page into the UserRow.

The Loader responds with:

CR
Command executed
W
Host sends a relative page addr in word representation. Then a word follows which the Loader must write into its buffer with the use of this address

aa
page addr relative (Byte!!)

ww1
loByte

ww2
hiByte

Loader responds with

CR
Command executed

X
End of communication. The Loader Monitor jumps to the optional user supplied procedure

FlashLoaderExit. If the system doesn’t find this procedure the loader does a JUMP to 0000h if it

terminates.

There is no response from the Loader.

3.50.6 Boot Area, Optimiser and re-compile

If the Optimiser is used or the Boot area contains large drivers there can be problems that the function addresses expected by the application can be changed after a re-compile. This concerns the application because the Boot itself cannot be changed by a self-flash. The result is that the application jumps to the now new calculated addresses in the Boot, but these have not changed in the Boot because they are “constant”.

A remedy is here to implement Boot Traps like described in the Compiler Manual. So Boot Traps must be imported:

From System Import Traps;

This import places a jump table into the Boot area. Now the procedures needed by the application must be placed as Traps into the Boot Block. Basically the first procedure in the Boot Block should be the Boot Test function (Procedure BootTest). So the Trap functions must be placed after it:

{$PHASE BootBlock $01F00}

Procedure BootTest;

begin

 …

end;

Procedure BootEntry; Trap;

begin

 FlashDownLoader;

end;

…

{$DEPHASE BootBlock}

Because at least a Boot entry for re-flashing for the application is necessary but the Boot function “FlashDownLoader“ maybe not reachable securely the Trap function “BootEntry“ now provides an entry point that is always secure. Application:

 if xxx then

 BootEntry;

 endif;

3.51 BootApplication and MainApplication

As an alternative for including the BootBlock into the application, with this switch

{$BootApplication $nnnn} with XMegas {$BootApplication}
it is possible to write an application which only contains code for the boot area and completely runs in the boot area. This switch must be placed after the Device declaration.
With standard AVR applications the Interrupt Vector Table always resides on address $0000 in the code area (Flash). The same also is true with the Codestart. This means that also the generated code starts with address $0000, but more exactly immediately behind the vector table.

With this switch the system can be forced to start the address generation and vector table in the boot area. So now it is possible to build an application which completely runs in the boot sections of the controller and still has access to all of the system resources and drivers because they are also placed into the boot section. Also interrupts are supported here. The address parameter for this switch is always a word address!
A main Application can be joined with the boot application in the define_fuses block:

AddApp instructs the programmer to load additional hexfiles build by another project:

 AddApp = 'pathname\projectname';

With the XMegas only the BootApplication mode is supported. The XMega drivers are much more complex compared to the AVRs and it makes sense to have the complete runtime system and the necessary drivers in the boot area.
Support function for the Boot Application to enter the standard application. This procedure also disables the an active WatchDog, disables the Interrupts and switches the Interrupts from Boot-vectors to the Main-vectors ($0000).

Procedure Application_Startup;

Support function for directly switching the vector tabels:
Procedure SetVectTabBoot(boot : boolean);

Support function for directly starting and jumping from MainApp into the BootApp:
Procedure BootStart;

The MainApp, which always begins at start address $0000 and also its vector table starts at $0000, now can communicate with the BootApp with the help of Traps. To implement this the BootApp must import Traps and export the desired functions. Sample in a BootApp:

From System Import Traps;

…
function BootFunction : boolean; Trap;

begin

 // do anything

 return(true);

end;

procedure BootProc(x : byte); Trap;

begin

 // do anything

end;

If there are any Traps defined in a BootApp Compiler/Assembler builds a ein File “BootAppName.traps“. In order to use these Traps/Jumps in the MainApp this file must be imported in the MainApp.

From System Import Traps;

ExternalTraps 'BootAppName.traps'; // max 16 ext traps !

Define

 …

For information a content of a Trap file:

BOOTSTART $040000

1479 20241 .TRAPTAB

1480 20241 SYSTEM.TrapTab:

1481 20241 0200FE
 .ADDR BootApp.BootFunction //function BootFunction : boolean; Trap;

1482 20242 020105 .ADDR BootApp.BootProc //procedure BootProc(x : byte); Trap;

1483 20244 000000 .ADDR 0

1484 20245 000000 .ADDR 0

1485 20247 000000 .ADDR 0

1486 20248 000000 .ADDR 0

1487 2024A 000000 .ADDR 0

1488 2024B 000000 .ADDR 0

1489 2024D 000000 .ADDR 0

1490 2024E 000000 .ADDR 0

1491 20250 000000 .ADDR 0

1492 20251 000000 .ADDR 0

1493 20253 000000 .ADDR 0

1494 20254 000000 .ADDR 0

1495 20256 000000 .ADDR 0

1496 20257 000000 .ADDR 0

Now the compiler knows these functions, their parameters and the absolut jump-addresses into the Boot. And now the MainApp can call these Trap functions:

 if BootFunction then
 // ...

 endif;

 BootProc($33);

Attention:

In the BootApp then there are all interupts disabled! This means that for example all functions using TimeOuts can not work because the interrupts only serve the MainApp. So one must carefully check in the MainApp and Traps to avoid dead-locks.

For security reasons the interrupts become disabled before a jump into a Boot function. After the return from the Boot area the interrupts are set to their previous state.

Furthermore one must take in mind that a re-compile of the MainApp is possible any time. But after a re-compile of the BootApp also the MainApp must be re-compiled.

Sample applications can be found in the Demos directories in “BootApp“
3.51.1 XMega FlashLoader

The XMegas are completely different in the Bootloader compared to the “normal“ Megas. Concerned are the Flash operations in the Boot but also the fact that the XMegas have a separate Boot Flash. Because of this the Phase/Dephase mode is not supported here but the separate BootApp application, defined by the switch {$BootApplication}. This switch must be placed immediate after the Device Define. Find more infos in the chapter above.

Furthermore some constants and functions are a “must“:

const

 // this constant must be the same as in the Main app

 DownLoaderID : word = $1234; // mandatory constant

procedure FlashLoaderInit; // mandatory

begin

end;

function FlashLoaderRecv : byte; // mandatory

begin

 return(SerInpC0);

end;

procedure FlashLoaderTransm(arg : byte); // mandatory

begin

 SerOutC0(arg);

end;

 // mandatory

procedure FlashLoaderExit;

begin

 if Application_Valid then // Flag is cleared at Loader start and set by the
 // Bootloader if successful
 EEprom[EEpromEnd]:= $00; // validate application for Boot usage

 Endif;

 mDelay(100);

 HardwareReset; // restart with a jump into the Boot
end;
The constant DownLoaderID must be present and must be the same in the BootApplication and in the downloadable Main.

The procedure FlashLoaderInit is always called at the Download Start and can be used to implement some init operations.

The procedure FlashLoaderRecv fetches a byte from the download interface.

The procedure FlashLoaderTransm passes a byte tot he download interface.

The procedure FlashLoaderExit must flag a successful DownLoad. At best this is done by a flag in the EEprom which can be accessed by both, the Downloader and also the downloaded Main. In the Main oft he Bootloader with each restart this flag must be checked whether the last Download was successful. If ok then the Loader jumps directly into the Main application. If not ok then it waits for a new download.
By a HardwareReset in the LoaderExit a complete restart is forced which leads to a check of this flag in the boot.
But therefore the BootRst fuse always must be active:

Define_Fuses

 Override_Fuses;

 COMport = USB;

 ProgMode = PDI;

 LockBits0 = [];

 FuseBits0 = [];

 FuseBits1 = [];

 FuseBits2 = [BootRst]; // mandatory !!

 // Brown-out is obligatory with USB !!!

 FuseBits5 = [BODACT0, BodLevel0, BodLevel1, BodLevel2];

The Main in the BootLoader must execute some checks:

{--}

{ Main Program }

{$IDATA}

begin

 // optional a port pin can be checked for a forced download

 // if Pin.x = false then ...

 // ...

 if EEprom[EEpromEnd] = $00 then
 // if a Download failed or the app was never programmed then there is no $00

 // if the main app forces a download then the last byte in the EEprom must be $FF

 //

 Application_Startup; // Jump into the Main Application

 endif;

 EnableInts($87);

 loop

 FlashDownLoader;

 // Downloader itself does an exit to the main app if

 // a valid main has been downloaded

 endloop;

end XMega_BootAppSer.

The Main application must also provide the same DownloaderID as the boot:

const

 // this constant must be the same as in the Main app

 DownLoaderID : word = $1234; // mandatory constant

If the Main Application runs then it is sure that the last download was valid. In the Main App it is possible to force a new Download:

 EEprom[EEpromEnd]:= $FF; // invalidate application for Boot usage

 mDelay(100);

 HardwareReset; // restart with a jump into the Boot
Forcing a HardwareReset a complete system restart is executed which always runs the Boot. In the Boot this flag is checked (described above) and because it is now <> $00 immediately the FlashDownLoader is called. An essential condition for this is that with programming the BootApp also the fuse BootRst is activated.

USB download mode

Please note that an USBprodName can not be defined here. This define is internally fixed to “BootLoader“.
Import USBboot, FlashLoader, ...;

Define

 ...

 USBmanufact = 'E-Lab Computers'; // max 31 bytes

 USBpid = 30;

 USBvid = $2345;

 USBprodRel = 201;

 USBcurrent = 200;

 USBvBUS = PortB.7; // port and pin

 // USBvBUS = none; // not used
Building a complete Boot Application

1. Build and compile the BootApp

2. Build and compile the MainApp.
3. With AVRprog make a PAC-file from the MainApp.

4. Program the BootApp. If USB Boot used build the USB drivers with the tool USB Inf/Sys Builder

5. Start the target system. It now expects a firmware download of the MainApp

6. With the tool FlashDownloader the generated PAC-file must be downloaded

Sample applications with a COMport download can be found in the Demos directories in “XMega_Boot”.

In “XMega_Boot“ you can also find the corresponding MainApp.
Sample applications with USB download can be found in the Demos directories in “XMega_BootUSB”.

In “XMega_BootUSB“ you can also find the corresponding MainApp.
3.52 Device Drivers

Overview
Often there is a need for additional memory because the intern memory for variables of the SingleChips (RAM/EEPROM) is too small. This problem can be solved in two ways: either change the current CPU for a larger one with more memory or use external memory. The first possibility often is not feasible because of price or size. On the other hand, which single chip has 32kByte of internal EEprom?

External memory extension with complete addresses and data lines is often impossible because of space and ports usage. So in many cases one must use external devices with 3-wire interfaces, e.g. I2C, SPI or microWire. But these chip have always different functionality so a common interface can’t be build or used and the Compiler normally can’t place variables into this area and an addressing and/or read or write in HLL is impossible.

With current Compilers therefore it was necessary that the user had to organize and build the accesses for himself, which is not an easy task. The external memory commonly was treated as an array of byte. Because of this there was no direct relationship between the external address and the type stored in the external memory. An insertion of a single byte between others results in a disaster if the whole program was not checked for changes dependent on this insertion.

It’s a good idea to overlay a structure on this “exotic“ memory, just like a “normal“ RAM. The Compiler can do that for you. The user simply must provide the physical access with certain procedures and functions. They are called a “Device Driver“.

These Device Drivers work byte oriented as opposed to the Compiler, which works type oriented. The user’s program can access these vars in external memory like those that reside in the internal memory of the CPU (RAM, EEPROM).

Another way of accessing external memory can be implemented with block transfers. But here the individual access to types etc. is lost again, but for some applications it can be a useful technique. See below under BlockDevice.
3.52.1 Organisation

1,
The Compiler must be informed about such a Device: Import UserPort ;

2.
The size in bytes of the external memory must be defined: Define UserPort = nnn;

3.
A compiler switch {$UDATA} locates the following var declarations into the external device. An additional switch e.g. {$IDATA} switches back to the internal area.
4.
A procedure that initialises the device must be written. This procedure is called once at system start or reset : UserDevice UsrDevIni

5.
A procedure that writes single bytes into the device is required: UserDevice UsrDevOut

6.
A function that reads single bytes from the device is required: UserDevice UsrDevIn
Import aa, bb, UserPort;

This import directive forces the Compiler to provide a UserPort and the related support.

Define UserPort = nnn;

With this define the size in bytes of the User Devices is declared

{$UDATA}

All following variable declarations after this compiler switch are located into the UserDevice.

3.52.2 Formal Declarations

UserDevice UsrDevIni;

If necessary, port and device inits must be done here.

UserDevice UsrDevOut (const adr : word; const outp : byte);

The system passes a 16Bit address and a byte to this procedure. The procedure the stores the byte at the desired address into the device.

UserDevice UsrDevInp (const adr : word) : byte;

The system passes a 16Bit address to this procedure. The procedure the reads the byte at the desired address from the device and returns it to the system.

The naming for the 3 procedures above is mandatory.

Program AVR_UsrDataI2C;

Device = 90S8515;

Import SysTick, UserPort, I2Cport;

From System Import longword;

Define

ProcClock
= 8000000;
{Hertz}

SysTick
= 10;
{msec}

StackSize
= $0020, iData;

FrameSize
= $0010, iData;

UserPort
= 2048;
// define Mem expansion size

I2Cport
= PortB;
{24C16}

I2Cdat
= 0;

I2Cclk
= 1;

Implementation

{$IDATA}

{--}

{ Type Declarations }

type

 ptB
= pointer to byte;

 ptW
= pointer to word;

{--}

{ Const Declarations }

const

 I2Cadr = $50;

{--}

{ Var Declarations }

var

 Timer1

: SysTimer8;

 bb
: byte;

 ww
: word;

 testB
: Byte;

 testCh
: char;

 testW
: word;

 testI
: integer;

 testL
: longword;

 testStr
: string[8];

 st
: string[5];

 wxyz
: Word;

 pp
: ptw;

{$UDATA} // place vars into User Device

var

 usrb

: byte;

 usri
: integer;

 usrl
: longword;

 usrArr
: array[0..10] of byte;

 uStr
: string[8];

 uRec

: record

 ub : byte;

 uw : word;

 uSt: string[4];

 end;

 pwDirT1
: ptw;

 pbEepAdr1
: ptb;

 prDir

: pointer to word;

{$IDATA}

// reset to internal RAM

{--}

{ functions }

(* for a UserDevice the following 3 function must be implemented *)

UserDevice UsrDevIni;

begin

 (* is called at System Init Time *)

 (* initialize Device Hardware *)

 (* for I2C nothing required *)

end;

UserDevice UsrDevInp (adr : word) : byte;

var ok : boolean;

 inp : byte;

begin

// DisableInts;

 (* because of a possible previous write access
*)

 (* the I2Cout function can fail up to 10msec
*)

 (* and a timeout loop must be implemented
*)

 (* don't forget your watchdog
*)

 SetSysTimer (Timer1, 2);

 repeat

 ok:= I2Cout (I2Cadr +hi (adr), lo (adr)); // set the read address

 until isSysTimerZero (Timer1) or ok;

 if ok then
 I2Cinp (I2Cadr, inp);

 // read the byte

 return(inp);

 else

// error ...

 endif;

// EnableInts;

 return($ff);

end;

UserDevice UsrDevOut (adr : word; outp : byte);

var ok : boolean;

begin

// DisableInts;

 (* because of a possible previous write access
*)
 (* the I2Cout function can fail up to 10msec

*)

 (* and a timeout loop must be implemented
*)

 (* don't forget your watchdog

*)

 SetSysTimer(Timer1, 2);

 repeat

 ok:= I2Cout (I2Cadr +hi (adr), lo (adr), outp);

 until isSysTimerZero(Timer1) or ok;

// EnableInts;

// if not ok then

end;

{--}

{ Main Program }

begin

 uStr[1]:= 'A';

// uStr:= st;

// not implemented

// uStr:= 'ABCD';
// not implemented

// TestStr:= uStr;
// not implemented

 uRec.uw:= $1234;

 uRec.ub:= $AA;

 uRec.uSt[2]:= 'X';

 testB:= uRec.ub;

 testW:= uRec.uw;

 testCh:= uRec.uSt[2];

 usrb:= 155;

 usri:= -155;

 usrl:= 123456;

 usrArr[3]:= 44;

 testB:= usrb;

 testI:= usrI;

 testL:= usrL;

 testB:= usrArr[3];

 loop

 NOP;

 endloop;

end AVR_UsrDataI2C.

The UserDevice/UDATA supports also record, array and string copy functions:

UserRec:= Record1;

Record1:= UserRec;

UserArr:= Array1;

Array1:= UserArr;

UserStr:= String1;

String1:= UserStr;

Not possible are Pointer to Record, Array, String.

Also a string-concat is not possible with the User Device.

3.52.3 BlockDevice

Contrary to a so called UserDevice a BlockDevice doesn’t work byte or type oriented, but with entire blocks. This means that always whole memory areas are copied. The copy operation must also be executed by a user provided service function. The source or destination of such a copy operation is defined by the construction of the service routine and can be arbitrary, also external devices are possible.

The system function ReadBlock at least needs one concerned user function. The same is true for the WriteBlock function. A specific Import or Define is not necessary.

The ReadBlock uses a procedure/function with the following principles. The name is arbitrary. If it’s absolutely secure, that all bytes can be completely copied, only a procedure is needed.

Procedure DriverInpP (adr : pointer; size : word);

begin

 (* very simple implementation of a Block Device
*)

 (* because the calling library block function
*)

 (* doesn't receive a transfer count from here
*)

 (* this procedure !must! transfer "size" bytes
*)

 (* The destination address is "adr"
*)

 (* The source adr is the job of this service
*)

 CopyBlock (@source, adr, size);

// possible action

end;

If it’s possible that the user provided implementation can not generate the desired count of bytes, a function is needed which returns the exact byte count:

Function DriverInpF (adr : pointer; size : word) : word;

begin

 (* very simple implementation of a Block Device
*)

 (* requested transfer count in "size"
*)

 (* actually transferred bytes count returned
*)

 (* The destination address is "adr"
*)

 (* The source adr is the job of this service
*)

 CopyBlock (@source, adr, size);

// possible action

 Return(size); // actual transferred byte count

end;

The system function ReadBlock now can be used with one of the above function/procedure as an argument:

(* read-in the var arr2 with max count2 bytes
*)

(* count2 is limited to sizeOf(arr2)
*)

(* return the number of bytes read in result
*)

Count2:= 3;

result:= ReadBlock (DriverInpF, arr2, count2);

result:= ReadBlock (DriverInpP, arr2, count2);

(* read-in the var arr2 with the sizeOf(arr2)
*)

(* return the number of bytes read in result
*)

result:= ReadBlock (DriverInpF, arr2);

result:= ReadBlock (DriverInpP, arr2);

The system function WriteBlock uses a procedure/function in the following manner. The name is arbitrary. If the user provided routine can ensure that all desired bytes can be written, the transfer can be done in a procedure like this:

Procedure DriverOutP (adr : pointer; size : word);

begin

 (* very simple implementation of a Block Device
*)

 (* because the calling library block function
*)

 (* doesn't receive a transfer count from here
*)

 (* this procedure !must! transfer "size" bytes
*)

 (* The source address is "adr"
*)

 (* The destination adr is the job of this service
*)

 CopyBlock (adr, @dest, size);

// possible action

end;

If it’s possible that the user provided implementation cannot write the desired count of bytes at once, a function is needed which returns the exact byte count written:

Function DriverOutF (adr : pointer; size : word) : word;

begin

 (* very simple implementation of a Block Device
*)

 (* requested transfer count in "size"
*)

 (* actually transferred bytes count returned
*)

 (* The source address is "adr"
*)

 (* The destination adr is the job of this service
*)

 CopyBlock (adr, @dest, size); // possible action

 return(size);

 // actual transferred byte count

end;
(* write-out the var arr1
*)

(* pass the numbers of bytes to write in count1
*)

(* count1 is limited to sizeOf(arr1)
*)

(* return the number of bytes written in result
*)

count1:= 3;

result:= WriteBlock(DriverOutF, arr1, count1);

result:= WriteBlock(DriverOutP, arr1, count1);

(* write-out the var arr1 with the sizeOf(arr1)
*)

(* return the number of bytes written in result *)

result:= WriteBlock (DriverOutF, arr1);

result:= WriteBlock (DriverOutP, arr1);
A typed pointer can also be used as the compiler knows the structure and therefore the size of the referenced variable.

result:= WriteBlock (DriverOutF, Ptr^, count1);

result:= WriteBlock (DriverOutP, Ptr^, count1);

result:= WriteBlock (DriverOutF, Ptr^);

result:= WriteBlock (DriverOutP, Ptr^);

Notes

Notes

[image: image40.bmp]
� EMBED Word.Picture.8 ���

(1996-2018 E-LAB Computers

Grombacherstr. 27

D74906 Bad Rappenau

Tel. 07268/9124-0

Fax. 07268/9124-24

Internet: � HYPERLINK http://www.e-lab.de ��www.e-lab.de�

e-mail: � HYPERLINK mailto:info@e-lab.de ��info@e-lab.de�

10-Apr-2018

_1198230215.doc
[image: image1.png]TASd

0zI-aomn
siandwod gy1-3

e awo ae ae
o wir
20o7] 9
x
om o
B
95n
sopaucd ooy
w0 we
o E "
ol —jane of—jane of—jane o
ol—5on o—5n o—sn T
57 57 57
w51 551
551 351
o) o
T]
pio piot
eqn eaT
o b e
Eisat Eisat
oq o
wr | o o [T @
eyl Lanl
o o
s
- =

